/* ################################################################################ # # r8169 is the Linux device driver released for RealTek RTL8169S/8110S, # RTL8169SB/8110SB, and RTL8110SC Gigabit Ethernet controllers with # PCI interface. # # Copyright(c) 2010 Realtek Semiconductor Corp. All rights reserved. # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation; either version 2 of the License, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # You should have received a copy of the GNU General Public License along with # this program; if not, see . # # Author: # Realtek NIC software team # No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan # ################################################################################ */ /* * This product is covered by one or more of the following patents: * US5,307,459, US5,434,872, US5,732,094, US6,570,884, US6,115,776, and US6,327,625. */ /* * This driver is modified from r8169.c in Linux kernel 2.6.18 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) #include #include #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) #include #include #include #include #include "r8169.h" /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ static const int max_interrupt_work = 20; /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). The RTL chips use a 64 element hash table based on the Ethernet CRC. */ static const int multicast_filter_limit = 32; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,8) #ifdef __CHECKER__ #define __force __attribute__((force)) #else #define __force #endif #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,8) #define _R(NAME,MAC,MASK) \ { .name = NAME, .mcfg = MAC, .RxConfigMask = MASK } static const struct { const char *name; u8 mcfg; u32 RxConfigMask; /* Clears the bits supported by this chip */ } rtl_chip_info[] = { _R("RTL8169", CFG_METHOD_1, 0xff7e1880), _R("RTL8169S/8110S", CFG_METHOD_2, 0xff7e1880), _R("RTL8169S/8110S", CFG_METHOD_3, 0xff7e1880), _R("RTL8169SB/8110SB", CFG_METHOD_4, 0xff7e1880), _R("RTL8169SC/8110SC", CFG_METHOD_5, 0xff7e1880), _R("RTL8169SC/8110SC", CFG_METHOD_6, 0xff7e1880), }; #undef _R enum cfg_version { RTL_CFG_0 = 0x00, RTL_CFG_1, RTL_CFG_2 }; static const struct { unsigned int region; unsigned int align; } rtl_cfg_info[] = { [RTL_CFG_0] = { 1, NET_IP_ALIGN }, [RTL_CFG_1] = { 2, NET_IP_ALIGN }, [RTL_CFG_2] = { 2, 8 } }; static struct pci_device_id rtl8169_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8167), 0, 0, RTL_CFG_0 }, { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8169), 0, 0, RTL_CFG_0 }, {0,}, }; MODULE_DEVICE_TABLE(pci, rtl8169_pci_tbl); static int rx_copybreak = 200; static int use_dac; static struct { u32 msg_enable; } debug = { -1 }; /* media options */ #define MAX_UNITS 8 static int speed[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 }; static int duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 }; static int autoneg[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 }; MODULE_AUTHOR("Realtek and the Linux r8169 crew "); MODULE_DESCRIPTION("RealTek RTL-8169 Gigabit Ethernet driver"); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10) MODULE_PARM(speed, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(duplex, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(autoneg, "1-" __MODULE_STRING(MAX_UNITS) "i"); #else static int num_speed = 0; static int num_duplex = 0; static int num_autoneg = 0; module_param_array(speed, int, &num_speed, 0); module_param_array(duplex, int, &num_duplex, 0); module_param_array(autoneg, int, &num_autoneg, 0); #endif MODULE_PARM_DESC(speed, "force phy operation. Deprecated by ethtool (8)."); MODULE_PARM_DESC(duplex, "force phy operation. Deprecated by ethtool (8)."); MODULE_PARM_DESC(autoneg, "force phy operation. Deprecated by ethtool (8)."); module_param(rx_copybreak, int, 0); MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); module_param(use_dac, int, 0); MODULE_PARM_DESC(use_dac, "Enable PCI DAC. Unsafe on 32 bit PCI slot."); #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) module_param_named(debug, debug.msg_enable, int, 0); MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 16=all)"); #endif//LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) MODULE_LICENSE("GPL"); #ifndef MODULE_VERSION #define MODULE_VERSION(_version) MODULE_INFO(version, _version) #endif MODULE_VERSION(RTL8169_VERSION); static void rtl8169_set_tx_config(struct net_device *dev); static void rtl8169_esd_timer(unsigned long __opaque); static void rtl8169_tx_clear(struct rtl8169_private *tp); static void rtl8169_rx_clear(struct rtl8169_private *tp); static int rtl8169_open(struct net_device *dev); static int rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance, struct pt_regs *regs); #else static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance); #endif static int rtl8169_init_ring(struct net_device *dev); static void rtl8169_hw_start(struct net_device *dev); static int rtl8169_close(struct net_device *dev); static void rtl8169_set_rx_mode(struct net_device *dev); static void rtl8169_tx_timeout(struct net_device *dev); static struct net_device_stats *rtl8169_get_stats(struct net_device *dev); static int rtl8169_rx_interrupt(struct net_device *, struct rtl8169_private *, void __iomem *, u32 budget); static int rtl8169_change_mtu(struct net_device *dev, int new_mtu); static void rtl8169_down(struct net_device *dev); static int rtl8169_set_mac_address(struct net_device *dev, void *p); void rtl8169_rar_set(struct rtl8169_private *tp, uint8_t *addr, uint32_t index); static void rtl8169_phy_power_up (struct net_device *dev); static void rtl8169_phy_power_down (struct net_device *dev); static void rtl8169_trx_reset(void __iomem *ioaddr); #ifdef CONFIG_R8169_NAPI static int rtl8169_poll(napi_ptr napi, napi_budget budget); #endif static const u16 rtl8169_intr_mask = SYSErr | LinkChg | RxOverflow | RxFIFOOver | TxErr | TxOK | RxErr | RxOK; static const u16 rtl8169_napi_event = RxOK | RxOverflow | RxFIFOOver | TxOK | TxErr; static const unsigned int rtl8169_rx_config = (Reserved2_data << Reserved2_shift) | (RX_DMA_BURST << RxCfgDMAShift); #if (( LINUX_VERSION_CODE < KERNEL_VERSION(2,4,27) ) || \ (( LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) ) && \ ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,3) ))) /* copied from linux kernel 2.6.20 include/linux/netdev.h */ #define NETDEV_ALIGN 32 #define NETDEV_ALIGN_CONST (NETDEV_ALIGN - 1) static inline void *netdev_priv(struct net_device *dev) { return (char *)dev + ((sizeof(struct net_device) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); } #endif //#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,5) #ifndef netif_msg_init #define netif_msg_init _kc_netif_msg_init /* copied from linux kernel 2.6.20 include/linux/netdevice.h */ static inline u32 _kc_netif_msg_init(int debug_value, int default_msg_enable_bits) { /* use default */ if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) return default_msg_enable_bits; if (debug_value == 0) /* no output */ return 0; /* set low N bits */ return (1 << debug_value) - 1; } #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,5) #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) /* copied from linux kernel 2.6.20 /include/linux/time.h */ /* Parameters used to convert the timespec values: */ #define MSEC_PER_SEC 1000L /* copied from linux kernel 2.6.20 /include/linux/jiffies.h */ /* * Change timeval to jiffies, trying to avoid the * most obvious overflows.. * * And some not so obvious. * * Note that we don't want to return MAX_LONG, because * for various timeout reasons we often end up having * to wait "jiffies+1" in order to guarantee that we wait * at _least_ "jiffies" - so "jiffies+1" had better still * be positive. */ #define MAX_JIFFY_OFFSET ((~0UL >> 1)-1) /* * Convert jiffies to milliseconds and back. * * Avoid unnecessary multiplications/divisions in the * two most common HZ cases: */ static inline unsigned int _kc_jiffies_to_msecs(const unsigned long j) { #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) return (MSEC_PER_SEC / HZ) * j; #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); #else return (j * MSEC_PER_SEC) / HZ; #endif } static inline unsigned long _kc_msecs_to_jiffies(const unsigned int m) { if (m > _kc_jiffies_to_msecs(MAX_JIFFY_OFFSET)) return MAX_JIFFY_OFFSET; #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) return m * (HZ / MSEC_PER_SEC); #else return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC; #endif } #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,11) //for linux kernel 2.6.10 and earlier. /* copied from linux kernel 2.6.12.6 /include/linux/pm.h */ typedef int __bitwise pci_power_t; /* copied from linux kernel 2.6.12.6 /include/linux/pci.h */ typedef u32 __bitwise pm_message_t; #define PCI_D0 ((pci_power_t __force) 0) #define PCI_D1 ((pci_power_t __force) 1) #define PCI_D2 ((pci_power_t __force) 2) #define PCI_D3hot ((pci_power_t __force) 3) #define PCI_D3cold ((pci_power_t __force) 4) #define PCI_POWER_ERROR ((pci_power_t __force) -1) /* copied from linux kernel 2.6.12.6 /drivers/pci/pci.c */ /** * pci_choose_state - Choose the power state of a PCI device * @dev: PCI device to be suspended * @state: target sleep state for the whole system. This is the value * that is passed to suspend() function. * * Returns PCI power state suitable for given device and given system * message. */ pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) { if (!pci_find_capability(dev, PCI_CAP_ID_PM)) return PCI_D0; switch (state) { case 0: return PCI_D0; case 3: return PCI_D3hot; default: printk("They asked me for state %d\n", state); // BUG(); } return PCI_D0; } #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,11) #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,9) //porting on 2.6.8.1 and earlier /** * msleep_interruptible - sleep waiting for waitqueue interruptions * @msecs: Time in milliseconds to sleep for */ #define msleep_interruptible _kc_msleep_interruptible unsigned long _kc_msleep_interruptible(unsigned int msecs) { unsigned long timeout = _kc_msecs_to_jiffies(msecs); while (timeout && !signal_pending(current)) { set_current_state(TASK_INTERRUPTIBLE); timeout = schedule_timeout(timeout); } return _kc_jiffies_to_msecs(timeout); } #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,9) /*****************************************************************************/ #if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,8) ) #define msleep(x) do { set_current_state(TASK_UNINTERRUPTIBLE); \ schedule_timeout((x * HZ)/1000 + 2); \ } while (0) #endif /*****************************************************************************/ #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) /* copied from linux kernel 2.6.20 include/linux/sched.h */ #ifndef __sched #define __sched __attribute__((__section__(".sched.text"))) #endif /* copied from linux kernel 2.6.20 kernel/timer.c */ signed long __sched schedule_timeout_uninterruptible(signed long timeout) { __set_current_state(TASK_UNINTERRUPTIBLE); return schedule_timeout(timeout); } /* copied from linux kernel 2.6.20 include/linux/mii.h */ #undef if_mii #define if_mii _kc_if_mii static inline struct mii_ioctl_data *if_mii(struct ifreq *rq) { return (struct mii_ioctl_data *) &rq->ifr_ifru; } #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,7) #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,22) static inline void eth_copy_and_sum (struct sk_buff *dest, const unsigned char *src, int len, int base) { memcpy (dest->data, src, len); } #endif //LINUX_VERSION_CODE > KERNEL_VERSION(2,6,22) static void mdio_write(void __iomem *ioaddr, int RegAddr, int value) { int i; RTL_W32(PHYAR, PHYAR_Write | (RegAddr & PHYAR_Reg_Mask) << PHYAR_Reg_shift | (value & PHYAR_Data_Mask)); for (i = 0; i < 20; i++) { /* Check if the RTL8169 has completed writing to the specified MII register */ if (!(RTL_R32(PHYAR) & PHYAR_Flag)) break; udelay(100); } } static int mdio_read(void __iomem *ioaddr, int RegAddr) { int i, value = -1; RTL_W32(PHYAR, PHYAR_Read | (RegAddr & PHYAR_Reg_Mask) << PHYAR_Reg_shift); for (i = 0; i < 20; i++) { /* Check if the RTL8169 has completed retrieving data from the specified MII register */ if (RTL_R32(PHYAR) & PHYAR_Flag) { value = (int) (RTL_R32(PHYAR) & PHYAR_Data_Mask); break; } udelay(100); } return value; } static void rtl8169_irq_mask_and_ack(void __iomem *ioaddr) { RTL_W16(IntrMask, 0x0000); RTL_W16(IntrStatus, 0xffff); } static void rtl8169_asic_down(void __iomem *ioaddr) { rtl8169_irq_mask_and_ack(ioaddr); RTL_W8(ChipCmd, 0x00); } static unsigned int rtl8169_xmii_reset_pending(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; unsigned int retval; spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); retval = mdio_read(ioaddr, MII_BMCR) & BMCR_RESET; spin_unlock_irqrestore(&tp->phy_lock, flags); return retval; } static unsigned int rtl8169_xmii_link_ok(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; unsigned int retval; spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); retval = mdio_read(ioaddr, MII_BMSR) & BMSR_LSTATUS; spin_unlock_irqrestore(&tp->phy_lock, flags); return retval; } static void rtl8169_xmii_reset_enable(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; int status; int i; spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, MII_BMCR, mdio_read(ioaddr, MII_BMCR) | BMCR_RESET); spin_unlock_irqrestore(&tp->phy_lock, flags); for(i = 0; i < 2500; i++) { spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); status = mdio_read(ioaddr, MII_BMSR) & BMCR_RESET; spin_unlock_irqrestore(&tp->phy_lock, flags); if(!status) return; mdelay(1); } } static void rtl8169_check_link_status(struct net_device *dev, struct rtl8169_private *tp, void __iomem *ioaddr) { unsigned long flags; u8 status; spin_lock_irqsave(&tp->lock, flags); if (tp->link_ok(dev)) { if (tp->mcfg == CFG_METHOD_4) { status = RTL_R8(PHYstatus); if ((status & _10bps) && (RTL_R8(Config2) & PCI_Clock_66MHz)) { RTL_W32(TxConfig, RTL_R32(TxConfig) & ~(TX_DMA_BURST << TxDMAShift)); } } else { RTL_W32(TxConfig, RTL_R32(TxConfig) | (TX_DMA_BURST << TxDMAShift)); } netif_carrier_on(dev); netif_start_queue(dev); if (netif_msg_ifup(tp)) printk(KERN_INFO PFX "%s: link up\n", dev->name); rtl8169_set_tx_config(dev); } else { if (netif_msg_ifdown(tp)) printk(KERN_INFO PFX "%s: link down\n", dev->name); netif_carrier_off(dev); netif_stop_queue(dev); } spin_unlock_irqrestore(&tp->lock, flags); } static void rtl8169_link_option(int idx, u8 *aut, u16 *spd, u8 *dup) { unsigned char opt_speed; unsigned char opt_duplex; unsigned char opt_autoneg; opt_speed = ((idx < MAX_UNITS) && (idx >= 0)) ? speed[idx] : 0xff; opt_duplex = ((idx < MAX_UNITS) && (idx >= 0)) ? duplex[idx] : 0xff; opt_autoneg = ((idx < MAX_UNITS) && (idx >= 0)) ? autoneg[idx] : 0xff; if ((opt_speed == 0xff) | (opt_duplex == 0xff) | (opt_autoneg == 0xff)) { *spd = SPEED_1000; *dup = DUPLEX_FULL; *aut = AUTONEG_ENABLE; } else { *spd = speed[idx]; *dup = duplex[idx]; *aut = autoneg[idx]; } } static void rtl8169_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; u8 options; wol->wolopts = 0; #define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST) wol->supported = WAKE_ANY; spin_lock_irq(&tp->lock); options = RTL_R8(Config1); if (!(options & PMEnable)) goto out_unlock; options = RTL_R8(Config3); if (options & LinkUp) wol->wolopts |= WAKE_PHY; if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC; options = RTL_R8(Config5); if (options & UWF) wol->wolopts |= WAKE_UCAST; if (options & BWF) wol->wolopts |= WAKE_BCAST; if (options & MWF) wol->wolopts |= WAKE_MCAST; out_unlock: spin_unlock_irq(&tp->lock); } static int rtl8169_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; int i; static struct { u32 opt; u16 reg; u8 mask; } cfg[] = { { WAKE_ANY, Config1, PMEnable }, { WAKE_PHY, Config3, LinkUp }, { WAKE_MAGIC, Config3, MagicPacket }, { WAKE_UCAST, Config5, UWF }, { WAKE_BCAST, Config5, BWF }, { WAKE_MCAST, Config5, MWF }, { WAKE_ANY, Config5, LanWake } }; spin_lock_irq(&tp->lock); RTL_W8(Cfg9346, Cfg9346_Unlock); for (i = 0; i < ARRAY_SIZE(cfg); i++) { u8 options = RTL_R8(cfg[i].reg) & ~cfg[i].mask; if (wol->wolopts & cfg[i].opt) options |= cfg[i].mask; RTL_W8(cfg[i].reg, options); } RTL_W8(Cfg9346, Cfg9346_Lock); tp->wol_enabled = (wol->wolopts) ? 1 : 0; spin_unlock_irq(&tp->lock); return 0; } static void rtl8169_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct rtl8169_private *tp = netdev_priv(dev); char firmware_version[32]; sprintf(firmware_version, "N/A"); strcpy(info->driver, MODULENAME); strcpy(info->version, RTL8169_VERSION); strcpy(info->bus_info, pci_name(tp->pci_dev)); strncpy(info->fw_version, firmware_version, 32); } static int rtl8169_get_regs_len(struct net_device *dev) { return R8169_REGS_SIZE; } static void rtl8169_set_tx_config(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; u32 tx_config; u8 duplex; duplex = (RTL_R8(PHYstatus) & FullDup) ? DUPLEX_FULL : DUPLEX_HALF; tx_config = RTL_R32(TxConfig) | IFG0 | IFG1; if (((tp->mcfg == CFG_METHOD_5) | (tp->mcfg == CFG_METHOD_6)) && duplex == DUPLEX_HALF) tx_config &= ~IFG0; RTL_W32(TxConfig, tx_config); } static int rtl8169_set_speed_xmii(struct net_device *dev, u8 autoneg, u16 speed, u8 duplex) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; int auto_nego = 0; int giga_ctrl = 0; int bmcr_true_force = 0; unsigned long flags; if ((speed != SPEED_1000) && (speed != SPEED_100) && (speed != SPEED_10)) { speed = SPEED_1000; duplex = DUPLEX_FULL; } if ((autoneg == AUTONEG_ENABLE) || (speed == SPEED_1000)) { /*n-way force*/ if ((speed == SPEED_10) && (duplex == DUPLEX_HALF)) { auto_nego |= ADVERTISE_10HALF; } else if ((speed == SPEED_10) && (duplex == DUPLEX_FULL)) { auto_nego |= ADVERTISE_10HALF | ADVERTISE_10FULL; } else if ((speed == SPEED_100) && (duplex == DUPLEX_HALF)) { auto_nego |= ADVERTISE_100HALF | ADVERTISE_10HALF | ADVERTISE_10FULL; } else if ((speed == SPEED_100) && (duplex == DUPLEX_FULL)) { auto_nego |= ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_10HALF | ADVERTISE_10FULL; } else if (speed == SPEED_1000) { giga_ctrl |= ADVERTISE_1000HALF | ADVERTISE_1000FULL; auto_nego |= ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_10HALF | ADVERTISE_10FULL; } auto_nego |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; tp->phy_auto_nego_reg = auto_nego; tp->phy_1000_ctrl_reg = giga_ctrl; spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, MII_ADVERTISE, auto_nego); mdio_write(ioaddr, MII_CTRL1000, giga_ctrl); mdio_write(ioaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); spin_unlock_irqrestore(&tp->phy_lock, flags); } else { /*true force*/ #ifndef BMCR_SPEED100 #define BMCR_SPEED100 0x0040 #endif #ifndef BMCR_SPEED10 #define BMCR_SPEED10 0x0000 #endif if ((speed == SPEED_10) && (duplex == DUPLEX_HALF)) { bmcr_true_force = BMCR_SPEED10; } else if ((speed == SPEED_10) && (duplex == DUPLEX_FULL)) { bmcr_true_force = BMCR_SPEED10 | BMCR_FULLDPLX; } else if ((speed == SPEED_100) && (duplex == DUPLEX_HALF)) { bmcr_true_force = BMCR_SPEED100; } else if ((speed == SPEED_100) && (duplex == DUPLEX_FULL)) { bmcr_true_force = BMCR_SPEED100 | BMCR_FULLDPLX; } spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, MII_BMCR, bmcr_true_force); spin_unlock_irqrestore(&tp->phy_lock, flags); } if ((tp->mcfg == CFG_METHOD_2) || (tp->mcfg == CFG_METHOD_3)) { spin_lock_irqsave(&tp->phy_lock, flags); if ((speed == SPEED_100) && (autoneg != AUTONEG_ENABLE)) { mdio_write(ioaddr, 0x17, 0x2138); mdio_write(ioaddr, 0x0e, 0x0260); } else { mdio_write(ioaddr, 0x17, 0x2108); mdio_write(ioaddr, 0x0e, 0x0000); } spin_unlock_irqrestore(&tp->phy_lock, flags); } return 0; } static int rtl8169_set_speed(struct net_device *dev, u8 autoneg, u16 speed, u8 duplex) { struct rtl8169_private *tp = netdev_priv(dev); int ret; ret = tp->set_speed(dev, autoneg, speed, duplex); if (netif_running(dev) && (tp->phy_1000_ctrl_reg & ADVERTISE_1000FULL)) mod_timer(&tp->timer, jiffies + RTL8169_PHY_TIMEOUT); return ret; } static int rtl8169_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8169_private *tp = netdev_priv(dev); unsigned long flags; int ret; spin_lock_irqsave(&tp->lock, flags); ret = rtl8169_set_speed(dev, cmd->autoneg, cmd->speed, cmd->duplex); spin_unlock_irqrestore(&tp->lock, flags); return ret; } static u32 rtl8169_get_tx_csum(struct net_device *dev) { return (dev->features & NETIF_F_IP_CSUM) != 0; } static u32 rtl8169_get_rx_csum(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); return tp->cp_cmd & RxChkSum; } static int rtl8169_set_tx_csum(struct net_device *dev, u32 data) { if (data) dev->features |= NETIF_F_IP_CSUM; else dev->features &= ~NETIF_F_IP_CSUM; return 0; } static int rtl8169_set_rx_csum(struct net_device *dev, u32 data) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; spin_lock_irqsave(&tp->lock, flags); if (data) tp->cp_cmd |= RxChkSum; else tp->cp_cmd &= ~RxChkSum; RTL_W16(CPlusCmd, tp->cp_cmd); RTL_R16(CPlusCmd); spin_unlock_irqrestore(&tp->lock, flags); return 0; } #ifdef CONFIG_R8169_VLAN static inline u32 rtl8169_tx_vlan_tag(struct rtl8169_private *tp, struct sk_buff *skb) { return (tp->vlgrp && vlan_tx_tag_present(skb)) ? TxVlanTag | swab16(vlan_tx_tag_get(skb)) : 0x00; } static void rtl8169_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; spin_lock_irqsave(&tp->lock, flags); tp->vlgrp = grp; if (tp->vlgrp) tp->cp_cmd |= RxVlan; else tp->cp_cmd &= ~RxVlan; RTL_W16(CPlusCmd, tp->cp_cmd); RTL_R16(CPlusCmd); spin_unlock_irqrestore(&tp->lock, flags); } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,22) static void rtl8169_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) { struct rtl8169_private *tp = netdev_priv(dev); unsigned long flags; spin_lock_irqsave(&tp->lock, flags); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,21) if (tp->vlgrp) tp->vlgrp->vlan_devices[vid] = NULL; #else vlan_group_set_device(tp->vlgrp, vid, NULL); #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,21) spin_unlock_irqrestore(&tp->lock, flags); } #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,22) static int rtl8169_rx_vlan_skb(struct rtl8169_private *tp, struct RxDesc *desc, struct sk_buff *skb) { u32 opts2 = le32_to_cpu(desc->opts2); int ret; if (tp->vlgrp && (opts2 & RxVlanTag)) { rtl8169_rx_hwaccel_skb(skb, tp->vlgrp, swab16(opts2 & 0xffff)); ret = 0; } else ret = -1; desc->opts2 = 0; return ret; } #else /* !CONFIG_R8169_VLAN */ static inline u32 rtl8169_tx_vlan_tag(struct rtl8169_private *tp, struct sk_buff *skb) { return 0; } static int rtl8169_rx_vlan_skb(struct rtl8169_private *tp, struct RxDesc *desc, struct sk_buff *skb) { return -1; } #endif static void rtl8169_gset_xmii(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; u8 status; cmd->supported = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP; cmd->autoneg = (mdio_read(ioaddr, MII_BMCR) & BMCR_ANENABLE) ? 1 : 0; cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg; if (tp->phy_auto_nego_reg & ADVERTISE_10HALF) cmd->advertising |= ADVERTISED_10baseT_Half; if (tp->phy_auto_nego_reg & ADVERTISE_10FULL) cmd->advertising |= ADVERTISED_10baseT_Full; if (tp->phy_auto_nego_reg & ADVERTISE_100HALF) cmd->advertising |= ADVERTISED_100baseT_Half; if (tp->phy_auto_nego_reg & ADVERTISE_100FULL) cmd->advertising |= ADVERTISED_100baseT_Full; if (tp->phy_1000_ctrl_reg & ADVERTISE_1000FULL) cmd->advertising |= ADVERTISED_1000baseT_Full; status = RTL_R8(PHYstatus); if (status & _1000bpsF) cmd->speed = SPEED_1000; else if (status & _100bps) cmd->speed = SPEED_100; else if (status & _10bps) cmd->speed = SPEED_10; if (status & TxFlowCtrl) cmd->advertising |= ADVERTISED_Asym_Pause; if (status & RxFlowCtrl) cmd->advertising |= ADVERTISED_Pause; cmd->duplex = ((status & _1000bpsF) || (status & FullDup)) ? DUPLEX_FULL : DUPLEX_HALF; } static int rtl8169_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct rtl8169_private *tp = netdev_priv(dev); unsigned long flags; spin_lock_irqsave(&tp->lock, flags); tp->get_settings(dev, cmd); spin_unlock_irqrestore(&tp->lock, flags); return 0; } static void rtl8169_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) { struct rtl8169_private *tp = netdev_priv(dev); unsigned long flags; if (regs->len > R8169_REGS_SIZE) regs->len = R8169_REGS_SIZE; spin_lock_irqsave(&tp->lock, flags); memcpy_fromio(p, tp->mmio_addr, regs->len); spin_unlock_irqrestore(&tp->lock, flags); } static u32 rtl8169_get_msglevel(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); return tp->msg_enable; } static void rtl8169_set_msglevel(struct net_device *dev, u32 value) { struct rtl8169_private *tp = netdev_priv(dev); tp->msg_enable = value; } static const char rtl8169_gstrings[][ETH_GSTRING_LEN] = { "tx_packets", "rx_packets", "tx_errors", "rx_errors", "rx_missed", "align_errors", "tx_single_collisions", "tx_multi_collisions", "unicast", "broadcast", "multicast", "tx_aborted", "tx_underrun", }; struct rtl8169_counters { u64 tx_packets; u64 rx_packets; u64 tx_errors; u32 rx_errors; u16 rx_missed; u16 align_errors; u32 tx_one_collision; u32 tx_multi_collision; u64 rx_unicast; u64 rx_broadcast; u32 rx_multicast; u16 tx_aborted; u16 tx_underun; }; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,33) static int rtl8169_get_stats_count(struct net_device *dev) { return ARRAY_SIZE(rtl8169_gstrings); } #endif static void rtl8169_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct rtl8169_counters *counters; dma_addr_t paddr; u32 cmd; ASSERT_RTNL(); counters = pci_alloc_consistent(tp->pci_dev, sizeof(*counters), &paddr); if (!counters) return; RTL_W32(CounterAddrHigh, (u64)paddr >> 32); cmd = (u64)paddr & DMA_32BIT_MASK; RTL_W32(CounterAddrLow, cmd); RTL_W32(CounterAddrLow, cmd | CounterDump); while (RTL_R32(CounterAddrLow) & CounterDump) { if (msleep_interruptible(1)) break; } RTL_W32(CounterAddrLow, 0); RTL_W32(CounterAddrHigh, 0); data[0] = le64_to_cpu(counters->tx_packets); data[1] = le64_to_cpu(counters->rx_packets); data[2] = le64_to_cpu(counters->tx_errors); data[3] = le32_to_cpu(counters->rx_errors); data[4] = le16_to_cpu(counters->rx_missed); data[5] = le16_to_cpu(counters->align_errors); data[6] = le32_to_cpu(counters->tx_one_collision); data[7] = le32_to_cpu(counters->tx_multi_collision); data[8] = le64_to_cpu(counters->rx_unicast); data[9] = le64_to_cpu(counters->rx_broadcast); data[10] = le32_to_cpu(counters->rx_multicast); data[11] = le16_to_cpu(counters->tx_aborted); data[12] = le16_to_cpu(counters->tx_underun); pci_free_consistent(tp->pci_dev, sizeof(*counters), counters, paddr); } static void rtl8169_get_strings(struct net_device *dev, u32 stringset, u8 *data) { switch(stringset) { case ETH_SS_STATS: memcpy(data, *rtl8169_gstrings, sizeof(rtl8169_gstrings)); break; } } #undef ethtool_op_get_link #define ethtool_op_get_link _kc_ethtool_op_get_link u32 _kc_ethtool_op_get_link(struct net_device *dev) { return netif_carrier_ok(dev) ? 1 : 0; } #undef ethtool_op_get_sg #define ethtool_op_get_sg _kc_ethtool_op_get_sg u32 _kc_ethtool_op_get_sg(struct net_device *dev) { #ifdef NETIF_F_SG return (dev->features & NETIF_F_SG) != 0; #else return 0; #endif } #undef ethtool_op_set_sg #define ethtool_op_set_sg _kc_ethtool_op_set_sg int _kc_ethtool_op_set_sg(struct net_device *dev, u32 data) { #ifdef NETIF_F_SG if (data) dev->features |= NETIF_F_SG; else dev->features &= ~NETIF_F_SG; #endif return 0; } static struct ethtool_ops rtl8169_ethtool_ops = { .get_drvinfo = rtl8169_get_drvinfo, .get_regs_len = rtl8169_get_regs_len, .get_link = ethtool_op_get_link, .get_settings = rtl8169_get_settings, .set_settings = rtl8169_set_settings, .get_msglevel = rtl8169_get_msglevel, .set_msglevel = rtl8169_set_msglevel, .get_rx_csum = rtl8169_get_rx_csum, .set_rx_csum = rtl8169_set_rx_csum, .get_tx_csum = rtl8169_get_tx_csum, .set_tx_csum = rtl8169_set_tx_csum, .get_sg = ethtool_op_get_sg, .set_sg = ethtool_op_set_sg, #ifdef NETIF_F_TSO .get_tso = ethtool_op_get_tso, .set_tso = ethtool_op_set_tso, #endif .get_regs = rtl8169_get_regs, .get_wol = rtl8169_get_wol, .set_wol = rtl8169_set_wol, .get_strings = rtl8169_get_strings, #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,33) .get_stats_count = rtl8169_get_stats_count, #endif .get_ethtool_stats = rtl8169_get_ethtool_stats, #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) #ifdef ETHTOOL_GPERMADDR .get_perm_addr = ethtool_op_get_perm_addr, #endif #endif//LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) }; static void rtl8169_get_mac_version(struct rtl8169_private *tp, void __iomem *ioaddr) { u32 reg,val32; val32 = RTL_R32(TxConfig) ; reg = val32 & 0xFC800000; switch(reg) { case 0x00000000: tp->mcfg = CFG_METHOD_1; break; case 0x00800000: tp->mcfg = CFG_METHOD_2; break; case 0x04000000: tp->mcfg = CFG_METHOD_3; break; case 0x10000000: tp->mcfg = CFG_METHOD_4; break; case 0x18000000: tp->mcfg = CFG_METHOD_5; break; case 0x98000000: tp->mcfg = CFG_METHOD_6; break; default: tp->mcfg = 0xFFFFFFFF; printk("unknown chip version (%x)\n",reg); break; } if (RTL_R8(Config2) & PCI_Clock_66MHz) { if (tp->mcfg == CFG_METHOD_5) RTL_W32(Offset_7Ch, 0x000FFFFF); else if (tp->mcfg == CFG_METHOD_6) RTL_W32(Offset_7Ch, 0x003FFFFF); } else { if (tp->mcfg == CFG_METHOD_5) RTL_W32(Offset_7Ch, 0x000FFF00); else if (tp->mcfg == CFG_METHOD_6) RTL_W32(Offset_7Ch, 0x003FFF00); } } static void rtl8169_print_mac_version(struct rtl8169_private *tp) { dprintk("mac_version = 0x%02x\n", tp->mcfg); } static void rtl8169_get_phy_version(struct rtl8169_private *tp, void __iomem *ioaddr) { const struct { u16 mask; u16 set; int pcfg; } phy_info[] = { { 0x000f, 0x0002, PCFG_METHOD_5 }, { 0x000f, 0x0001, PCFG_METHOD_4 }, { 0x000f, 0x0000, PCFG_METHOD_3 }, { 0x0000, 0x0000, PCFG_METHOD_2 } /* Catch-all */ }, *p = phy_info; u16 reg; mdio_write(ioaddr, 0x1f, 0x0000); reg = mdio_read(ioaddr, MII_PHYSID2) & 0xffff; while ((reg & p->mask) != p->set) p++; tp->pcfg = p->pcfg; } static void rtl8169_print_phy_version(struct rtl8169_private *tp) { struct { int version; char *msg; u32 reg; } phy_print[] = { { PCFG_METHOD_5, "PCFG_METHOD_5", 0x0002 }, { PCFG_METHOD_4, "PCFG_METHOD_4", 0x0001 }, { PCFG_METHOD_3, "PCFG_METHOD_3", 0x0000 }, { PCFG_METHOD_2, "PCFG_METHOD_2", 0x0000 }, { 0, NULL, 0x0000 } }, *p; for (p = phy_print; p->msg; p++) { if (tp->pcfg == p->version) { dprintk("phy_version == %s (%04x)\n", p->msg, p->reg); return; } } dprintk("phy_version == Unknown\n"); } static void rtl8169_hw_phy_config(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct pci_dev *pdev = tp->pci_dev; unsigned long flags; u16 vendor_id; u16 device_id; spin_lock_irqsave(&tp->phy_lock, flags); if (tp->mcfg == CFG_METHOD_6) { mdio_write(ioaddr, 0x1f, 0x0001); mdio_write(ioaddr, 0x04, 0x0000); mdio_write(ioaddr, 0x03, 0x00a1); mdio_write(ioaddr, 0x02, 0x0008); mdio_write(ioaddr, 0x01, 0x0120); mdio_write(ioaddr, 0x00, 0x1000); mdio_write(ioaddr, 0x04, 0x0800); mdio_write(ioaddr, 0x04, 0x9000); mdio_write(ioaddr, 0x03, 0x802f); mdio_write(ioaddr, 0x02, 0x4f02); mdio_write(ioaddr, 0x01, 0x0409); mdio_write(ioaddr, 0x00, 0xf099); mdio_write(ioaddr, 0x04, 0x9800); mdio_write(ioaddr, 0x04, 0xa000); mdio_write(ioaddr, 0x03, 0xdf01); mdio_write(ioaddr, 0x02, 0xdf20); mdio_write(ioaddr, 0x01, 0xff95); mdio_write(ioaddr, 0x00, 0xba00); mdio_write(ioaddr, 0x04, 0xa800); mdio_write(ioaddr, 0x04, 0xf000); mdio_write(ioaddr, 0x03, 0xdf01); mdio_write(ioaddr, 0x02, 0xdf20); mdio_write(ioaddr, 0x01, 0x101a); mdio_write(ioaddr, 0x00, 0xa0ff); mdio_write(ioaddr, 0x04, 0xf800); mdio_write(ioaddr, 0x04, 0x0000); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, 0x1f, 0x0001); mdio_write(ioaddr, 0x0b, 0x8480); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, 0x1f, 0x0001); mdio_write(ioaddr, 0x18, 0x67c7); mdio_write(ioaddr, 0x04, 0x2000); mdio_write(ioaddr, 0x03, 0x002f); mdio_write(ioaddr, 0x02, 0x4360); mdio_write(ioaddr, 0x01, 0x0109); mdio_write(ioaddr, 0x00, 0x3022); mdio_write(ioaddr, 0x04, 0x2800); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, 0x1f, 0x0001); mdio_write(ioaddr, 0x17, 0x0cc0); mdio_write(ioaddr, 0x1f, 0x0000); } else if (tp->mcfg == CFG_METHOD_5) { mdio_write(ioaddr, 0x1f, 0x0001); mdio_write(ioaddr, 0x04, 0x0000); mdio_write(ioaddr, 0x03, 0x00a1); mdio_write(ioaddr, 0x02, 0x0008); mdio_write(ioaddr, 0x01, 0x0120); mdio_write(ioaddr, 0x00, 0x1000); mdio_write(ioaddr, 0x04, 0x0800); mdio_write(ioaddr, 0x04, 0x9000); mdio_write(ioaddr, 0x03, 0x802f); mdio_write(ioaddr, 0x02, 0x4f02); mdio_write(ioaddr, 0x01, 0x0409); mdio_write(ioaddr, 0x00, 0xf099); mdio_write(ioaddr, 0x04, 0x9800); mdio_write(ioaddr, 0x04, 0xa000); mdio_write(ioaddr, 0x03, 0xdf01); mdio_write(ioaddr, 0x02, 0xdf20); mdio_write(ioaddr, 0x01, 0xff95); mdio_write(ioaddr, 0x00, 0xba00); mdio_write(ioaddr, 0x04, 0xa800); mdio_write(ioaddr, 0x04, 0xf000); mdio_write(ioaddr, 0x03, 0xdf01); mdio_write(ioaddr, 0x02, 0xdf20); mdio_write(ioaddr, 0x01, 0x101a); mdio_write(ioaddr, 0x00, 0xa0ff); mdio_write(ioaddr, 0x04, 0xf800); mdio_write(ioaddr, 0x04, 0x0000); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, 0x1f, 0x0001); mdio_write(ioaddr, 0x10, 0xf41b); mdio_write(ioaddr, 0x14, 0xfb54); mdio_write(ioaddr, 0x18, 0xf5c7); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, 0x1f, 0x0001); mdio_write(ioaddr, 0x17, 0x0cc0); mdio_write(ioaddr, 0x1f, 0x0000); pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID, &vendor_id); pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &device_id); if ((vendor_id == 0x1458) && (device_id == 0xe000)) { mdio_write(ioaddr, 0x1f, 0x0001); mdio_write(ioaddr, 0x10, 0xf01b); mdio_write(ioaddr, 0x1f, 0x0000); } } else if (tp->mcfg == CFG_METHOD_4) { mdio_write(ioaddr, 0x1f, 0x0002); mdio_write(ioaddr, 0x01, 0x90d0); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, 0x1e, 0x8c00); } else if ((tp->mcfg == CFG_METHOD_2) || (tp->mcfg == CFG_METHOD_3)) { mdio_write(ioaddr, 0x1f, 0x0001); mdio_write(ioaddr, 0x06, 0x006e); mdio_write(ioaddr, 0x08, 0x0708); mdio_write(ioaddr, 0x15, 0x4000); mdio_write(ioaddr, 0x18, 0x65c7); mdio_write(ioaddr, 0x1f, 0x0001); mdio_write(ioaddr, 0x03, 0x00a1); mdio_write(ioaddr, 0x02, 0x0008); mdio_write(ioaddr, 0x01, 0x0120); mdio_write(ioaddr, 0x00, 0x1000); mdio_write(ioaddr, 0x04, 0x0800); mdio_write(ioaddr, 0x04, 0x0000); mdio_write(ioaddr, 0x03, 0xff41); mdio_write(ioaddr, 0x02, 0xdf60); mdio_write(ioaddr, 0x01, 0x0140); mdio_write(ioaddr, 0x00, 0x0077); mdio_write(ioaddr, 0x04, 0x7800); mdio_write(ioaddr, 0x04, 0x7000); mdio_write(ioaddr, 0x03, 0x802f); mdio_write(ioaddr, 0x02, 0x4f02); mdio_write(ioaddr, 0x01, 0x0409); mdio_write(ioaddr, 0x00, 0xf0f9); mdio_write(ioaddr, 0x04, 0x9800); mdio_write(ioaddr, 0x04, 0x9000); mdio_write(ioaddr, 0x03, 0xdf01); mdio_write(ioaddr, 0x02, 0xdf20); mdio_write(ioaddr, 0x01, 0xff95); mdio_write(ioaddr, 0x00, 0xba00); mdio_write(ioaddr, 0x04, 0xa800); mdio_write(ioaddr, 0x04, 0xa000); mdio_write(ioaddr, 0x03, 0xff41); mdio_write(ioaddr, 0x02, 0xdf20); mdio_write(ioaddr, 0x01, 0x0140); mdio_write(ioaddr, 0x00, 0x00bb); mdio_write(ioaddr, 0x04, 0xb800); mdio_write(ioaddr, 0x04, 0xb000); mdio_write(ioaddr, 0x03, 0xdf41); mdio_write(ioaddr, 0x02, 0xdc60); mdio_write(ioaddr, 0x01, 0x6340); mdio_write(ioaddr, 0x00, 0x007d); mdio_write(ioaddr, 0x04, 0xd800); mdio_write(ioaddr, 0x04, 0xd000); mdio_write(ioaddr, 0x03, 0xdf01); mdio_write(ioaddr, 0x02, 0xdf20); mdio_write(ioaddr, 0x01, 0x100a); mdio_write(ioaddr, 0x00, 0xa0ff); mdio_write(ioaddr, 0x04, 0xf800); mdio_write(ioaddr, 0x04, 0xf000); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, 0x0b, 0x0000); mdio_write(ioaddr, 0x00, 0x9200); } spin_unlock_irqrestore(&tp->phy_lock, flags); } static void rtl8169_phy_timer(unsigned long __opaque) { struct net_device *dev = (struct net_device *)__opaque; struct rtl8169_private *tp = netdev_priv(dev); struct timer_list *timer = &tp->timer; unsigned long timeout = RTL8169_PHY_TIMEOUT; assert(tp->mcfg > CFG_METHOD_1); assert(tp->pcfg < PCFG_METHOD_6); if (!(tp->phy_1000_ctrl_reg & ADVERTISE_1000FULL)) return; spin_lock_irq(&tp->lock); if (tp->phy_reset_pending(dev)) { /* * A busy loop could burn quite a few cycles on nowadays CPU. * Let's delay the execution of the timer for a few ticks. */ timeout = HZ/10; goto out_mod_timer; } if (tp->link_ok(dev)) goto out_unlock; if (netif_msg_link(tp)) printk(KERN_WARNING "%s: PHY reset until link up\n", dev->name); tp->phy_reset_enable(dev); out_mod_timer: mod_timer(timer, jiffies + timeout); out_unlock: spin_unlock_irq(&tp->lock); } static inline void rtl8169_delete_timer(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct timer_list *timer = &tp->timer; if ((tp->mcfg <= CFG_METHOD_1) || (tp->pcfg >= PCFG_METHOD_6)) return; del_timer_sync(timer); } static inline void rtl8169_request_timer(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct timer_list *timer = &tp->timer; if ((tp->mcfg <= CFG_METHOD_1) || (tp->pcfg >= PCFG_METHOD_6)) return; init_timer(timer); timer->expires = jiffies + RTL8169_PHY_TIMEOUT; timer->data = (unsigned long)(dev); timer->function = rtl8169_phy_timer; add_timer(timer); } static inline void rtl8169_delete_esd_timer(struct net_device *dev, struct timer_list *timer) { struct rtl8169_private *tp = netdev_priv(dev); spin_lock_irq(&tp->lock); del_timer_sync(timer); spin_unlock_irq(&tp->lock); } static inline void rtl8169_request_esd_timer(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct timer_list *timer = &tp->esd_timer; init_timer(timer); timer->expires = jiffies + RTL8169_ESD_TIMEOUT; timer->data = (unsigned long)(dev); timer->function = rtl8169_esd_timer; add_timer(timer); } #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void rtl8169_netpoll(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; disable_irq(pdev->irq); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) rtl8169_interrupt(pdev->irq, dev, NULL); #else rtl8169_interrupt(pdev->irq, dev); #endif enable_irq(pdev->irq); } #endif static void rtl8169_release_board(struct pci_dev *pdev, struct net_device *dev, void __iomem *ioaddr) { rtl8169_phy_power_down(dev); iounmap(ioaddr); pci_release_regions(pdev); pci_disable_device(pdev); free_netdev(dev); } /** * rtl8169_set_mac_address - Change the Ethernet Address of the NIC * @dev: network interface device structure * @p: pointer to an address structure * * Return 0 on success, negative on failure **/ static int rtl8169_set_mac_address(struct net_device *dev, void *p) { struct rtl8169_private *tp = netdev_priv(dev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); memcpy(tp->mac_addr, addr->sa_data, dev->addr_len); rtl8169_rar_set(tp, tp->mac_addr, 0); return 0; } /****************************************************************************** * rtl8169_rar_set - Puts an ethernet address into a receive address register. * * tp - The private data structure for driver * addr - Address to put into receive address register * index - Receive address register to write *****************************************************************************/ void rtl8169_rar_set(struct rtl8169_private *tp, uint8_t *addr, uint32_t index) { void __iomem *ioaddr = tp->mmio_addr; uint32_t rar_low = 0; uint32_t rar_high = 0; rar_low = ((uint32_t) addr[0] | ((uint32_t) addr[1] << 8) | ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8)); RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W32(MAC4, rar_high); RTL_W32(MAC0, rar_low); RTL_W8(Cfg9346, Cfg9346_Lock); } static void rtl8169_phy_reset(struct net_device *dev, struct rtl8169_private *tp) { int i; tp->phy_reset_enable(dev); for (i = 0; i < 100; i++) { if (!tp->phy_reset_pending(dev)) return; msleep(1); } if (netif_msg_link(tp)) printk(KERN_ERR "%s: PHY reset failed.\n", dev->name); } static void rtl8169_init_phy(struct net_device *dev, struct rtl8169_private *tp) { void __iomem *ioaddr = tp->mmio_addr; static int board_idx = -1; u8 autoneg, duplex; u16 speed; board_idx++; rtl8169_hw_phy_config(dev); dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n"); RTL_W8(0x82, 0x01); if (tp->mcfg < CFG_METHOD_3) { dprintk("Set PCI Latency=0x40\n"); pci_write_config_byte(tp->pci_dev, PCI_LATENCY_TIMER, 0x40); } if (tp->mcfg == CFG_METHOD_2) { dprintk("Set MAC Reg C+CR Offset 0x82h = 0x01h\n"); RTL_W8(0x82, 0x01); dprintk("Set PHY Reg 0x0bh = 0x00h\n"); mdio_write(ioaddr, 0x0b, 0x0000); //w 0x0b 15 0 0 } rtl8169_link_option(board_idx, &autoneg, &speed, &duplex); rtl8169_phy_reset(dev, tp); rtl8169_set_speed(dev, autoneg, speed, duplex); } #ifdef ETHTOOL_OPS_COMPAT static int ethtool_get_settings(struct net_device *dev, void *useraddr) { struct ethtool_cmd cmd = { ETHTOOL_GSET }; int err; if (!ethtool_ops->get_settings) return -EOPNOTSUPP; err = ethtool_ops->get_settings(dev, &cmd); if (err < 0) return err; if (copy_to_user(useraddr, &cmd, sizeof(cmd))) return -EFAULT; return 0; } static int ethtool_set_settings(struct net_device *dev, void *useraddr) { struct ethtool_cmd cmd; if (!ethtool_ops->set_settings) return -EOPNOTSUPP; if (copy_from_user(&cmd, useraddr, sizeof(cmd))) return -EFAULT; return ethtool_ops->set_settings(dev, &cmd); } static int ethtool_get_drvinfo(struct net_device *dev, void *useraddr) { struct ethtool_drvinfo info; struct ethtool_ops *ops = ethtool_ops; if (!ops->get_drvinfo) return -EOPNOTSUPP; memset(&info, 0, sizeof(info)); info.cmd = ETHTOOL_GDRVINFO; ops->get_drvinfo(dev, &info); if (ops->self_test_count) info.testinfo_len = ops->self_test_count(dev); if (ops->get_stats_count) info.n_stats = ops->get_stats_count(dev); if (ops->get_regs_len) info.regdump_len = ops->get_regs_len(dev); if (ops->get_eeprom_len) info.eedump_len = ops->get_eeprom_len(dev); if (copy_to_user(useraddr, &info, sizeof(info))) return -EFAULT; return 0; } static int ethtool_get_regs(struct net_device *dev, char *useraddr) { struct ethtool_regs regs; struct ethtool_ops *ops = ethtool_ops; void *regbuf; int reglen, ret; if (!ops->get_regs || !ops->get_regs_len) return -EOPNOTSUPP; if (copy_from_user(®s, useraddr, sizeof(regs))) return -EFAULT; reglen = ops->get_regs_len(dev); if (regs.len > reglen) regs.len = reglen; regbuf = kmalloc(reglen, GFP_USER); if (!regbuf) return -ENOMEM; ops->get_regs(dev, ®s, regbuf); ret = -EFAULT; if (copy_to_user(useraddr, ®s, sizeof(regs))) goto out; useraddr += offsetof(struct ethtool_regs, data); if (copy_to_user(useraddr, regbuf, reglen)) goto out; ret = 0; out: kfree(regbuf); return ret; } static int ethtool_get_wol(struct net_device *dev, char *useraddr) { struct ethtool_wolinfo wol = { ETHTOOL_GWOL }; if (!ethtool_ops->get_wol) return -EOPNOTSUPP; ethtool_ops->get_wol(dev, &wol); if (copy_to_user(useraddr, &wol, sizeof(wol))) return -EFAULT; return 0; } static int ethtool_set_wol(struct net_device *dev, char *useraddr) { struct ethtool_wolinfo wol; if (!ethtool_ops->set_wol) return -EOPNOTSUPP; if (copy_from_user(&wol, useraddr, sizeof(wol))) return -EFAULT; return ethtool_ops->set_wol(dev, &wol); } static int ethtool_get_msglevel(struct net_device *dev, char *useraddr) { struct ethtool_value edata = { ETHTOOL_GMSGLVL }; if (!ethtool_ops->get_msglevel) return -EOPNOTSUPP; edata.data = ethtool_ops->get_msglevel(dev); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } static int ethtool_set_msglevel(struct net_device *dev, char *useraddr) { struct ethtool_value edata; if (!ethtool_ops->set_msglevel) return -EOPNOTSUPP; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; ethtool_ops->set_msglevel(dev, edata.data); return 0; } static int ethtool_nway_reset(struct net_device *dev) { if (!ethtool_ops->nway_reset) return -EOPNOTSUPP; return ethtool_ops->nway_reset(dev); } static int ethtool_get_link(struct net_device *dev, void *useraddr) { struct ethtool_value edata = { ETHTOOL_GLINK }; if (!ethtool_ops->get_link) return -EOPNOTSUPP; edata.data = ethtool_ops->get_link(dev); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } static int ethtool_get_eeprom(struct net_device *dev, void *useraddr) { struct ethtool_eeprom eeprom; struct ethtool_ops *ops = ethtool_ops; u8 *data; int ret; if (!ops->get_eeprom || !ops->get_eeprom_len) return -EOPNOTSUPP; if (copy_from_user(&eeprom, useraddr, sizeof(eeprom))) return -EFAULT; /* Check for wrap and zero */ if (eeprom.offset + eeprom.len <= eeprom.offset) return -EINVAL; /* Check for exceeding total eeprom len */ if (eeprom.offset + eeprom.len > ops->get_eeprom_len(dev)) return -EINVAL; data = kmalloc(eeprom.len, GFP_USER); if (!data) return -ENOMEM; ret = -EFAULT; if (copy_from_user(data, useraddr + sizeof(eeprom), eeprom.len)) goto out; ret = ops->get_eeprom(dev, &eeprom, data); if (ret) goto out; ret = -EFAULT; if (copy_to_user(useraddr, &eeprom, sizeof(eeprom))) goto out; if (copy_to_user(useraddr + sizeof(eeprom), data, eeprom.len)) goto out; ret = 0; out: kfree(data); return ret; } static int ethtool_set_eeprom(struct net_device *dev, void *useraddr) { struct ethtool_eeprom eeprom; struct ethtool_ops *ops = ethtool_ops; u8 *data; int ret; if (!ops->set_eeprom || !ops->get_eeprom_len) return -EOPNOTSUPP; if (copy_from_user(&eeprom, useraddr, sizeof(eeprom))) return -EFAULT; /* Check for wrap and zero */ if (eeprom.offset + eeprom.len <= eeprom.offset) return -EINVAL; /* Check for exceeding total eeprom len */ if (eeprom.offset + eeprom.len > ops->get_eeprom_len(dev)) return -EINVAL; data = kmalloc(eeprom.len, GFP_USER); if (!data) return -ENOMEM; ret = -EFAULT; if (copy_from_user(data, useraddr + sizeof(eeprom), eeprom.len)) goto out; ret = ops->set_eeprom(dev, &eeprom, data); if (ret) goto out; if (copy_to_user(useraddr + sizeof(eeprom), data, eeprom.len)) ret = -EFAULT; out: kfree(data); return ret; } static int ethtool_get_coalesce(struct net_device *dev, void *useraddr) { struct ethtool_coalesce coalesce = { ETHTOOL_GCOALESCE }; if (!ethtool_ops->get_coalesce) return -EOPNOTSUPP; ethtool_ops->get_coalesce(dev, &coalesce); if (copy_to_user(useraddr, &coalesce, sizeof(coalesce))) return -EFAULT; return 0; } static int ethtool_set_coalesce(struct net_device *dev, void *useraddr) { struct ethtool_coalesce coalesce; if (!ethtool_ops->get_coalesce) return -EOPNOTSUPP; if (copy_from_user(&coalesce, useraddr, sizeof(coalesce))) return -EFAULT; return ethtool_ops->set_coalesce(dev, &coalesce); } static int ethtool_get_ringparam(struct net_device *dev, void *useraddr) { struct ethtool_ringparam ringparam = { ETHTOOL_GRINGPARAM }; if (!ethtool_ops->get_ringparam) return -EOPNOTSUPP; ethtool_ops->get_ringparam(dev, &ringparam); if (copy_to_user(useraddr, &ringparam, sizeof(ringparam))) return -EFAULT; return 0; } static int ethtool_set_ringparam(struct net_device *dev, void *useraddr) { struct ethtool_ringparam ringparam; if (!ethtool_ops->get_ringparam) return -EOPNOTSUPP; if (copy_from_user(&ringparam, useraddr, sizeof(ringparam))) return -EFAULT; return ethtool_ops->set_ringparam(dev, &ringparam); } static int ethtool_get_pauseparam(struct net_device *dev, void *useraddr) { struct ethtool_pauseparam pauseparam = { ETHTOOL_GPAUSEPARAM }; if (!ethtool_ops->get_pauseparam) return -EOPNOTSUPP; ethtool_ops->get_pauseparam(dev, &pauseparam); if (copy_to_user(useraddr, &pauseparam, sizeof(pauseparam))) return -EFAULT; return 0; } static int ethtool_set_pauseparam(struct net_device *dev, void *useraddr) { struct ethtool_pauseparam pauseparam; if (!ethtool_ops->get_pauseparam) return -EOPNOTSUPP; if (copy_from_user(&pauseparam, useraddr, sizeof(pauseparam))) return -EFAULT; return ethtool_ops->set_pauseparam(dev, &pauseparam); } static int ethtool_get_rx_csum(struct net_device *dev, char *useraddr) { struct ethtool_value edata = { ETHTOOL_GRXCSUM }; if (!ethtool_ops->get_rx_csum) return -EOPNOTSUPP; edata.data = ethtool_ops->get_rx_csum(dev); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } static int ethtool_set_rx_csum(struct net_device *dev, char *useraddr) { struct ethtool_value edata; if (!ethtool_ops->set_rx_csum) return -EOPNOTSUPP; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; ethtool_ops->set_rx_csum(dev, edata.data); return 0; } static int ethtool_get_tx_csum(struct net_device *dev, char *useraddr) { struct ethtool_value edata = { ETHTOOL_GTXCSUM }; if (!ethtool_ops->get_tx_csum) return -EOPNOTSUPP; edata.data = ethtool_ops->get_tx_csum(dev); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } static int ethtool_set_tx_csum(struct net_device *dev, char *useraddr) { struct ethtool_value edata; if (!ethtool_ops->set_tx_csum) return -EOPNOTSUPP; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; return ethtool_ops->set_tx_csum(dev, edata.data); } static int ethtool_get_sg(struct net_device *dev, char *useraddr) { struct ethtool_value edata = { ETHTOOL_GSG }; if (!ethtool_ops->get_sg) return -EOPNOTSUPP; edata.data = ethtool_ops->get_sg(dev); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } static int ethtool_set_sg(struct net_device *dev, char *useraddr) { struct ethtool_value edata; if (!ethtool_ops->set_sg) return -EOPNOTSUPP; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; return ethtool_ops->set_sg(dev, edata.data); } static int ethtool_get_tso(struct net_device *dev, char *useraddr) { struct ethtool_value edata = { ETHTOOL_GTSO }; if (!ethtool_ops->get_tso) return -EOPNOTSUPP; edata.data = ethtool_ops->get_tso(dev); if (copy_to_user(useraddr, &edata, sizeof(edata))) return -EFAULT; return 0; } static int ethtool_set_tso(struct net_device *dev, char *useraddr) { struct ethtool_value edata; if (!ethtool_ops->set_tso) return -EOPNOTSUPP; if (copy_from_user(&edata, useraddr, sizeof(edata))) return -EFAULT; return ethtool_ops->set_tso(dev, edata.data); } static int ethtool_self_test(struct net_device *dev, char *useraddr) { struct ethtool_test test; struct ethtool_ops *ops = ethtool_ops; u64 *data; int ret; if (!ops->self_test || !ops->self_test_count) return -EOPNOTSUPP; if (copy_from_user(&test, useraddr, sizeof(test))) return -EFAULT; test.len = ops->self_test_count(dev); data = kmalloc(test.len * sizeof(u64), GFP_USER); if (!data) return -ENOMEM; ops->self_test(dev, &test, data); ret = -EFAULT; if (copy_to_user(useraddr, &test, sizeof(test))) goto out; useraddr += sizeof(test); if (copy_to_user(useraddr, data, test.len * sizeof(u64))) goto out; ret = 0; out: kfree(data); return ret; } static int ethtool_get_strings(struct net_device *dev, void *useraddr) { struct ethtool_gstrings gstrings; struct ethtool_ops *ops = ethtool_ops; u8 *data; int ret; if (!ops->get_strings) return -EOPNOTSUPP; if (copy_from_user(&gstrings, useraddr, sizeof(gstrings))) return -EFAULT; switch (gstrings.string_set) { case ETH_SS_TEST: if (!ops->self_test_count) return -EOPNOTSUPP; gstrings.len = ops->self_test_count(dev); break; case ETH_SS_STATS: if (!ops->get_stats_count) return -EOPNOTSUPP; gstrings.len = ops->get_stats_count(dev); break; default: return -EINVAL; } data = kmalloc(gstrings.len * ETH_GSTRING_LEN, GFP_USER); if (!data) return -ENOMEM; ops->get_strings(dev, gstrings.string_set, data); ret = -EFAULT; if (copy_to_user(useraddr, &gstrings, sizeof(gstrings))) goto out; useraddr += sizeof(gstrings); if (copy_to_user(useraddr, data, gstrings.len * ETH_GSTRING_LEN)) goto out; ret = 0; out: kfree(data); return ret; } static int ethtool_phys_id(struct net_device *dev, void *useraddr) { struct ethtool_value id; if (!ethtool_ops->phys_id) return -EOPNOTSUPP; if (copy_from_user(&id, useraddr, sizeof(id))) return -EFAULT; return ethtool_ops->phys_id(dev, id.data); } static int ethtool_get_stats(struct net_device *dev, void *useraddr) { struct ethtool_stats stats; struct ethtool_ops *ops = ethtool_ops; u64 *data; int ret; if (!ops->get_ethtool_stats || !ops->get_stats_count) return -EOPNOTSUPP; if (copy_from_user(&stats, useraddr, sizeof(stats))) return -EFAULT; stats.n_stats = ops->get_stats_count(dev); data = kmalloc(stats.n_stats * sizeof(u64), GFP_USER); if (!data) return -ENOMEM; ops->get_ethtool_stats(dev, &stats, data); ret = -EFAULT; if (copy_to_user(useraddr, &stats, sizeof(stats))) goto out; useraddr += sizeof(stats); if (copy_to_user(useraddr, data, stats.n_stats * sizeof(u64))) goto out; ret = 0; out: kfree(data); return ret; } static int ethtool_ioctl(struct ifreq *ifr) { struct net_device *dev = __dev_get_by_name(ifr->ifr_name); void *useraddr = (void *) ifr->ifr_data; u32 ethcmd; /* * XXX: This can be pushed down into the ethtool_* handlers that * need it. Keep existing behaviour for the moment. */ if (!capable(CAP_NET_ADMIN)) return -EPERM; if (!dev || !netif_device_present(dev)) return -ENODEV; if (copy_from_user(ðcmd, useraddr, sizeof (ethcmd))) return -EFAULT; switch (ethcmd) { case ETHTOOL_GSET: return ethtool_get_settings(dev, useraddr); case ETHTOOL_SSET: return ethtool_set_settings(dev, useraddr); case ETHTOOL_GDRVINFO: return ethtool_get_drvinfo(dev, useraddr); case ETHTOOL_GREGS: return ethtool_get_regs(dev, useraddr); case ETHTOOL_GWOL: return ethtool_get_wol(dev, useraddr); case ETHTOOL_SWOL: return ethtool_set_wol(dev, useraddr); case ETHTOOL_GMSGLVL: return ethtool_get_msglevel(dev, useraddr); case ETHTOOL_SMSGLVL: return ethtool_set_msglevel(dev, useraddr); case ETHTOOL_NWAY_RST: return ethtool_nway_reset(dev); case ETHTOOL_GLINK: return ethtool_get_link(dev, useraddr); case ETHTOOL_GEEPROM: return ethtool_get_eeprom(dev, useraddr); case ETHTOOL_SEEPROM: return ethtool_set_eeprom(dev, useraddr); case ETHTOOL_GCOALESCE: return ethtool_get_coalesce(dev, useraddr); case ETHTOOL_SCOALESCE: return ethtool_set_coalesce(dev, useraddr); case ETHTOOL_GRINGPARAM: return ethtool_get_ringparam(dev, useraddr); case ETHTOOL_SRINGPARAM: return ethtool_set_ringparam(dev, useraddr); case ETHTOOL_GPAUSEPARAM: return ethtool_get_pauseparam(dev, useraddr); case ETHTOOL_SPAUSEPARAM: return ethtool_set_pauseparam(dev, useraddr); case ETHTOOL_GRXCSUM: return ethtool_get_rx_csum(dev, useraddr); case ETHTOOL_SRXCSUM: return ethtool_set_rx_csum(dev, useraddr); case ETHTOOL_GTXCSUM: return ethtool_get_tx_csum(dev, useraddr); case ETHTOOL_STXCSUM: return ethtool_set_tx_csum(dev, useraddr); case ETHTOOL_GSG: return ethtool_get_sg(dev, useraddr); case ETHTOOL_SSG: return ethtool_set_sg(dev, useraddr); case ETHTOOL_GTSO: return ethtool_get_tso(dev, useraddr); case ETHTOOL_STSO: return ethtool_set_tso(dev, useraddr); case ETHTOOL_TEST: return ethtool_self_test(dev, useraddr); case ETHTOOL_GSTRINGS: return ethtool_get_strings(dev, useraddr); case ETHTOOL_PHYS_ID: return ethtool_phys_id(dev, useraddr); case ETHTOOL_GSTATS: return ethtool_get_stats(dev, useraddr); default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } #endif //ETHTOOL_OPS_COMPAT static int rtl8169_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct mii_ioctl_data *data = if_mii(ifr); unsigned long flags; if (!netif_running(dev)) return -ENODEV; switch (cmd) { case SIOCGMIIPHY: data->phy_id = 32; /* Internal PHY */ return 0; case SIOCGMIIREG: spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); data->val_out = mdio_read(tp->mmio_addr, data->reg_num & 0x1f); spin_unlock_irqrestore(&tp->phy_lock, flags); return 0; case SIOCSMIIREG: if (!capable(CAP_NET_ADMIN)) return -EPERM; spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(tp->mmio_addr, data->reg_num & 0x1f, data->val_in); spin_unlock_irqrestore(&tp->phy_lock, flags); return 0; #ifdef ETHTOOL_OPS_COMPAT case SIOCETHTOOL: return ethtool_ioctl(ifr); #endif default: return -EOPNOTSUPP; } } static void rtl8169_phy_power_up (struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; mdio_write(ioaddr, 0x1F, 0x0000); mdio_write(ioaddr, 0x0E, 0x0000); } static void rtl8169_phy_power_down (struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, MII_BMCR, BMCR_PDOWN); } static void rtl8169_esd_timer(unsigned long __opaque) { struct net_device *dev = (struct net_device *)__opaque; struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; struct timer_list *timer = &tp->esd_timer; unsigned long timeout = RTL8169_ESD_TIMEOUT; u8 cmd; u8 cls; u16 io_base_l; u16 io_base_h; u16 mem_base_l; u16 mem_base_h; u8 ilr; u16 resv_0x20_l; u16 resv_0x20_h; u16 resv_0x24_l; u16 resv_0x24_h; tp->esd_flag = 0; pci_read_config_byte(pdev, PCI_COMMAND, &cmd); if (cmd != tp->pci_cfg_space.cmd) { pci_write_config_byte(pdev, PCI_COMMAND, tp->pci_cfg_space.cmd); tp->esd_flag = 1; } pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cls); if (cls != tp->pci_cfg_space.cls) { pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, tp->pci_cfg_space.cls); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_0, &io_base_l); if (io_base_l != tp->pci_cfg_space.io_base_l) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_0, tp->pci_cfg_space.io_base_l); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_0 + 2, &io_base_h); if (io_base_h != tp->pci_cfg_space.io_base_h) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_0 + 2, tp->pci_cfg_space.io_base_h); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_1, &mem_base_l); if (mem_base_l != tp->pci_cfg_space.mem_base_l) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_1, tp->pci_cfg_space.mem_base_l); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_1 + 2, &mem_base_h); if (mem_base_h != tp->pci_cfg_space.mem_base_h) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_1 + 2, tp->pci_cfg_space.mem_base_h); tp->esd_flag = 1; } pci_read_config_byte(pdev, PCI_INTERRUPT_LINE, &ilr); if (ilr != tp->pci_cfg_space.ilr) { pci_write_config_byte(pdev, PCI_INTERRUPT_LINE, tp->pci_cfg_space.ilr); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_4, &resv_0x20_l); if (resv_0x20_l != tp->pci_cfg_space.resv_0x20_l) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_4, tp->pci_cfg_space.resv_0x20_l); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_4 + 2, &resv_0x20_h); if (resv_0x20_h != tp->pci_cfg_space.resv_0x20_h) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_4 + 2, tp->pci_cfg_space.resv_0x20_h); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_5, &resv_0x24_l); if (resv_0x24_l != tp->pci_cfg_space.resv_0x24_l) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_5, tp->pci_cfg_space.resv_0x24_l); tp->esd_flag = 1; } pci_read_config_word(pdev, PCI_BASE_ADDRESS_5 + 2, &resv_0x24_h); if (resv_0x24_h != tp->pci_cfg_space.resv_0x24_h) { pci_write_config_word(pdev, PCI_BASE_ADDRESS_5 + 2, tp->pci_cfg_space.resv_0x24_h); tp->esd_flag = 1; } if (tp->esd_flag != 0) { rtl8169_tx_clear(tp); rtl8169_rx_clear(tp); rtl8169_open(dev); tp->esd_flag = 0; } mod_timer(timer, jiffies + timeout); } #ifdef HAVE_NET_DEVICE_OPS static const struct net_device_ops rtl8169_netdev_ops = { .ndo_open = rtl8169_open, .ndo_stop = rtl8169_close, .ndo_get_stats = rtl8169_get_stats, .ndo_start_xmit = rtl8169_start_xmit, .ndo_tx_timeout = rtl8169_tx_timeout, .ndo_change_mtu = rtl8169_change_mtu, .ndo_set_mac_address = rtl8169_set_mac_address, .ndo_do_ioctl = rtl8169_ioctl, .ndo_set_multicast_list = rtl8169_set_rx_mode, #ifdef CONFIG_R8169_VLAN .ndo_vlan_rx_register = rtl8169_vlan_rx_register, #endif #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = rtl8169_netpoll, #endif }; #endif //HAVE_NET_DEVICE_OPS static int __devinit rtl8169_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { const unsigned int region = rtl_cfg_info[ent->driver_data].region; struct rtl8169_private *tp; struct net_device *dev; void __iomem *ioaddr; unsigned int pm_cap; int i, rc; if (netif_msg_drv(&debug)) { printk(KERN_INFO "%s Gigabit Ethernet driver %s loaded\n", MODULENAME, RTL8169_VERSION); } dev = alloc_etherdev(sizeof (*tp)); if (!dev) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_drv(&debug)) dev_err(&pdev->dev, "unable to alloc new ethernet\n"); #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) rc = -ENOMEM; goto out; } SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pdev->dev); tp = netdev_priv(dev); tp->dev = dev; tp->msg_enable = netif_msg_init(debug.msg_enable, R8169_MSG_DEFAULT); /* enable device (incl. PCI PM wakeup and hotplug setup) */ rc = pci_enable_device(pdev); if (rc < 0) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) dev_err(&pdev->dev, "enable failure\n"); #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) goto err_out_free_dev_1; } rc = pci_set_mwi(pdev); if (rc < 0) goto err_out_disable_2; /* save power state before pci_enable_device overwrites it */ pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM); if (pm_cap) { u16 pwr_command, acpi_idle_state; pci_read_config_word(pdev, pm_cap + PCI_PM_CTRL, &pwr_command); acpi_idle_state = pwr_command & PCI_PM_CTRL_STATE_MASK; } else { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) { dev_err(&pdev->dev, "PowerManagement capability not found.\n"); } #else printk("PowerManagement capability not found.\n"); #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) } /* make sure PCI base addr 1 is MMIO */ if (!(pci_resource_flags(pdev, region) & IORESOURCE_MEM)) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) { dev_err(&pdev->dev, "region #%d not an MMIO resource, aborting\n", region); } #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) rc = -ENODEV; goto err_out_mwi_3; } /* check for weird/broken PCI region reporting */ if (pci_resource_len(pdev, region) < R8169_REGS_SIZE) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) { dev_err(&pdev->dev, "Invalid PCI region size(s), aborting\n"); } #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) rc = -ENODEV; goto err_out_mwi_3; } rc = pci_request_regions(pdev, MODULENAME); if (rc < 0) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) dev_err(&pdev->dev, "could not request regions.\n"); #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) goto err_out_mwi_3; } tp->cp_cmd = PCIMulRW | RxChkSum; if ((sizeof(dma_addr_t) > 4) && !pci_set_dma_mask(pdev, DMA_64BIT_MASK) && use_dac) { tp->cp_cmd |= PCIDAC; dev->features |= NETIF_F_HIGHDMA; } else { rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (rc < 0) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) { dev_err(&pdev->dev, "DMA configuration failed.\n"); } #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) goto err_out_free_res_4; } } pci_set_master(pdev); /* ioremap MMIO region */ ioaddr = ioremap(pci_resource_start(pdev, region), R8169_REGS_SIZE); if (!ioaddr) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) dev_err(&pdev->dev, "cannot remap MMIO, aborting\n"); #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) rc = -EIO; goto err_out_free_res_4; } /* Unneeded ? Don't mess with Mrs. Murphy. */ rtl8169_irq_mask_and_ack(ioaddr); rtl8169_trx_reset(ioaddr); /* Identify chip attached to board */ rtl8169_get_mac_version(tp, ioaddr); rtl8169_get_phy_version(tp, ioaddr); rtl8169_print_mac_version(tp); rtl8169_print_phy_version(tp); for (i = ARRAY_SIZE(rtl_chip_info) - 1; i >= 0; i--) { if (tp->mcfg == rtl_chip_info[i].mcfg) break; } if (i < 0) { /* Unknown chip: assume array element #0, original RTL-8169 */ #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (netif_msg_probe(tp)) { dev_printk(KERN_DEBUG, &pdev->dev, "unknown chip version, assuming %s\n", rtl_chip_info[0].name); } #else printk("Realtek unknown chip version, assuming %s\n", rtl_chip_info[0].name); #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) i++; } tp->chipset = i; RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W8(Config1, RTL_R8(Config1) | PMEnable); RTL_W8(Config5, RTL_R8(Config5) & PMEStatus); RTL_W8(Cfg9346, Cfg9346_Lock); tp->set_speed = rtl8169_set_speed_xmii; tp->get_settings = rtl8169_gset_xmii; tp->phy_reset_enable = rtl8169_xmii_reset_enable; tp->phy_reset_pending = rtl8169_xmii_reset_pending; tp->link_ok = rtl8169_xmii_link_ok; RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W8(Cfg9346, Cfg9346_Lock); /* Get MAC address. FIXME: read EEPROM */ for (i = 0; i < MAC_ADDR_LEN; i++) dev->dev_addr[i] = RTL_R8(MAC0 + i); #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,13) memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); #endif memcpy(dev->dev_addr, dev->dev_addr, dev->addr_len); RTL_NET_DEVICE_OPS(rtl8169_netdev_ops); SET_ETHTOOL_OPS(dev, &rtl8169_ethtool_ops); dev->watchdog_timeo = RTL8169_TX_TIMEOUT; dev->irq = pdev->irq; dev->base_addr = (unsigned long) ioaddr; #ifdef CONFIG_R8169_NAPI RTL_NAPI_CONFIG(dev, tp, rtl8169_poll, R8169_NAPI_WEIGHT); #endif #ifdef CONFIG_R8169_VLAN dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,22) dev->vlan_rx_kill_vid = rtl8169_vlan_rx_kill_vid; #endif //LINUX_VERSION_CODE < KERNEL_VERSION(2,6,22) #endif //CONFIG_R8169_VLAN dev->features |= NETIF_F_IP_CSUM; tp->cp_cmd |= RxChkSum; tp->cp_cmd |= RTL_R16(CPlusCmd); tp->intr_mask = 0xffff; tp->pci_dev = pdev; tp->mmio_addr = ioaddr; tp->align = rtl_cfg_info[ent->driver_data].align; spin_lock_init(&tp->lock); spin_lock_init(&tp->phy_lock); rc = register_netdev(dev); if (rc < 0) goto err_out_unmap_5; pci_set_drvdata(pdev, dev); printk(KERN_INFO "%s: This product is covered by one or more of the following patents: US5,307,459, US5,434,872, US5,732,094, US6,570,884, US6,115,776, and US6,327,625.\n", MODULENAME); if (netif_msg_probe(tp)) { printk(KERN_INFO "%s: %s at 0x%lx, " "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x, " "IRQ %d\n", dev->name, rtl_chip_info[tp->chipset].name, dev->base_addr, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], dev->irq); } rtl8169_phy_power_up (dev); rtl8169_init_phy(dev, tp); out: return rc; err_out_unmap_5: iounmap(ioaddr); err_out_free_res_4: pci_release_regions(pdev); err_out_mwi_3: pci_clear_mwi(pdev); err_out_disable_2: pci_disable_device(pdev); err_out_free_dev_1: free_netdev(dev); goto out; } static void __devexit rtl8169_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); assert(dev != NULL); assert(tp != NULL); flush_scheduled_work(); unregister_netdev(dev); rtl8169_release_board(pdev, dev, tp->mmio_addr); pci_set_drvdata(pdev, NULL); } static void rtl8169_set_rxbufsize(struct rtl8169_private *tp, struct net_device *dev) { void __iomem *ioaddr = tp->mmio_addr; unsigned int mtu = dev->mtu; tp->rx_buf_sz = (mtu > ETH_DATA_LEN) ? mtu + ETH_HLEN + 8 : RX_BUF_SIZE; RTL_W16(RxMaxSize, tp->rx_buf_sz); } static int rtl8169_open(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; int retval; rtl8169_set_rxbufsize(tp, dev); retval = request_irq(dev->irq, rtl8169_interrupt, SA_SHIRQ, dev->name, dev); if (retval < 0) goto out; retval = -ENOMEM; /* * Rx and Tx descriptors needs 256 bytes alignment. * pci_alloc_consistent provides more. */ tp->TxDescArray = pci_alloc_consistent(pdev, R8169_TX_RING_BYTES, &tp->TxPhyAddr); if (!tp->TxDescArray) goto err_free_irq; tp->RxDescArray = pci_alloc_consistent(pdev, R8169_RX_RING_BYTES, &tp->RxPhyAddr); if (!tp->RxDescArray) goto err_free_tx; memset(tp->TxDescArray, 0, R8169_TX_RING_BYTES); memset(tp->RxDescArray, 0, R8169_RX_RING_BYTES); retval = rtl8169_init_ring(dev); if (retval < 0) goto err_free_rx; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) INIT_WORK(&tp->task, NULL, dev); #else INIT_DELAYED_WORK(&tp->task, NULL); #endif #ifdef CONFIG_R8169_NAPI RTL_NAPI_ENABLE(dev, &tp->napi); #endif spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); spin_unlock_irqrestore(&tp->phy_lock, flags); rtl8169_hw_start(dev); if (tp->esd_flag == 0) { rtl8169_request_timer(dev); rtl8169_request_esd_timer(dev); } rtl8169_check_link_status(dev, tp, tp->mmio_addr); out: return retval; err_free_rx: pci_free_consistent(pdev, R8169_RX_RING_BYTES, tp->RxDescArray, tp->RxPhyAddr); err_free_tx: pci_free_consistent(pdev, R8169_TX_RING_BYTES, tp->TxDescArray, tp->TxPhyAddr); err_free_irq: free_irq(dev->irq, dev); goto out; } static void rtl8169_trx_reset(void __iomem *ioaddr) { int i; /* Soft reset the chip. */ RTL_W8(ChipCmd, CmdReset); /* Check that the chip has finished the reset. */ for (i = 1000; i > 0; i--) { if ((RTL_R8(ChipCmd) & CmdReset) == 0) break; udelay(100); } } static void rtl8169_hw_reset(void __iomem *ioaddr) { /* Disable interrupts */ rtl8169_irq_mask_and_ack(ioaddr); /* Reset the chipset */ rtl8169_trx_reset(ioaddr); } static void rtl8169_hw_start(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; struct pci_dev *pdev = tp->pci_dev; rtl8169_trx_reset(ioaddr); RTL_W8(Cfg9346, Cfg9346_Unlock); RTL_W8(Reserved1, Reserved1_data); tp->cp_cmd |= PCIMulRW; RTL_W16(CPlusCmd, tp->cp_cmd); pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08); if (tp->mcfg == CFG_METHOD_2) tp->cp_cmd |= EnAnaPLL; else tp->cp_cmd &= ~EnAnaPLL; RTL_W16(CPlusCmd, tp->cp_cmd); pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x40); /* * Undocumented corner. Supposedly: */ RTL_W16(IntrMitigate, 0x0000); /* * Magic spell: some iop3xx ARM board needs the TxDescAddrHigh * register to be written before TxDescAddrLow to work. * Switching from MMIO to I/O access fixes the issue as well. */ RTL_W32(TxDescStartAddrLow, ((u64) tp->TxPhyAddr & DMA_32BIT_MASK)); RTL_W32(RxDescAddrLow, ((u64) tp->RxPhyAddr & DMA_32BIT_MASK)); RTL_W32(TxDescStartAddrHigh, ((u64) tp->TxPhyAddr >> 32)); RTL_W32(RxDescAddrHigh, ((u64) tp->RxPhyAddr >> 32)); RTL_W32(RxMissed, 0); /* no early-rx interrupts */ RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000); /* Clear the interrupt status. */ RTL_W16(IntrStatus, 0xFFFF); /* Enable all known interrupts by setting the interrupt mask. */ RTL_W16(IntrMask, rtl8169_intr_mask); RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); /* Set Rx Config register */ rtl8169_set_rx_mode(dev); /* Set DMA burst size and Interframe Gap Time */ rtl8169_set_tx_config(dev); RTL_W8(Cfg9346, Cfg9346_Lock); if (tp->link_ok(dev)) netif_start_queue(dev); else netif_stop_queue(dev); if (!tp->pci_cfg_is_read) { pci_read_config_byte(pdev, PCI_COMMAND, &tp->pci_cfg_space.cmd); pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &tp->pci_cfg_space.cls); pci_read_config_word(pdev, PCI_BASE_ADDRESS_0, &tp->pci_cfg_space.io_base_l); pci_read_config_word(pdev, PCI_BASE_ADDRESS_0 + 2, &tp->pci_cfg_space.io_base_h); pci_read_config_word(pdev, PCI_BASE_ADDRESS_1, &tp->pci_cfg_space.mem_base_l); pci_read_config_word(pdev, PCI_BASE_ADDRESS_1 + 2, &tp->pci_cfg_space.mem_base_h); pci_read_config_byte(pdev, PCI_INTERRUPT_LINE, &tp->pci_cfg_space.ilr); pci_read_config_word(pdev, PCI_BASE_ADDRESS_4, &tp->pci_cfg_space.resv_0x20_l); pci_read_config_word(pdev, PCI_BASE_ADDRESS_4 + 2, &tp->pci_cfg_space.resv_0x20_h); pci_read_config_word(pdev, PCI_BASE_ADDRESS_5, &tp->pci_cfg_space.resv_0x24_l); pci_read_config_word(pdev, PCI_BASE_ADDRESS_5 + 2, &tp->pci_cfg_space.resv_0x24_h); tp->pci_cfg_is_read = 1; } udelay(10); } static int rtl8169_change_mtu(struct net_device *dev, int new_mtu) { struct rtl8169_private *tp = netdev_priv(dev); int ret = 0; if (new_mtu < ETH_ZLEN || new_mtu > Jumbo_Frame_7k) return -EINVAL; dev->mtu = new_mtu; if (!netif_running(dev)) goto out; rtl8169_down(dev); rtl8169_set_rxbufsize(tp, dev); ret = rtl8169_init_ring(dev); if (ret < 0) goto out; #ifdef CONFIG_R8169_NAPI RTL_NAPI_ENABLE(dev, &tp->napi); #endif//CONFIG_R8169_NAPI rtl8169_hw_start(dev); rtl8169_request_timer(dev); out: return ret; } static inline void rtl8169_make_unusable_by_asic(struct RxDesc *desc) { desc->addr = 0x0badbadbadbadbadull; desc->opts1 &= ~cpu_to_le32(DescOwn | RsvdMask); } static void rtl8169_free_rx_skb(struct rtl8169_private *tp, struct sk_buff **sk_buff, struct RxDesc *desc) { struct pci_dev *pdev = tp->pci_dev; pci_unmap_single(pdev, le64_to_cpu(desc->addr), tp->rx_buf_sz, PCI_DMA_FROMDEVICE); dev_kfree_skb(*sk_buff); *sk_buff = NULL; rtl8169_make_unusable_by_asic(desc); } static inline void rtl8169_mark_to_asic(struct RxDesc *desc, u32 rx_buf_sz) { u32 eor = le32_to_cpu(desc->opts1) & RingEnd; desc->opts1 = cpu_to_le32(DescOwn | eor | rx_buf_sz); } static inline void rtl8169_map_to_asic(struct RxDesc *desc, dma_addr_t mapping, u32 rx_buf_sz) { desc->addr = cpu_to_le64(mapping); wmb(); rtl8169_mark_to_asic(desc, rx_buf_sz); } static int rtl8169_alloc_rx_skb(struct pci_dev *pdev, struct sk_buff **sk_buff, struct RxDesc *desc, int rx_buf_sz, unsigned int align) { struct sk_buff *skb; dma_addr_t mapping; int ret = 0; skb = dev_alloc_skb(rx_buf_sz + align); if (!skb) goto err_out; skb_reserve(skb, (align - 1) & (uintptr_t)skb->data); *sk_buff = skb; mapping = pci_map_single(pdev, skb->data, rx_buf_sz, PCI_DMA_FROMDEVICE); rtl8169_map_to_asic(desc, mapping, rx_buf_sz); out: return ret; err_out: ret = -ENOMEM; rtl8169_make_unusable_by_asic(desc); goto out; } static void rtl8169_rx_clear(struct rtl8169_private *tp) { int i; for (i = 0; i < NUM_RX_DESC; i++) { if (tp->Rx_skbuff[i]) { rtl8169_free_rx_skb(tp, tp->Rx_skbuff + i, tp->RxDescArray + i); } } } static u32 rtl8169_rx_fill(struct rtl8169_private *tp, struct net_device *dev, u32 start, u32 end) { u32 cur; for (cur = start; end - cur > 0; cur++) { int ret, i = cur % NUM_RX_DESC; if (tp->Rx_skbuff[i]) continue; ret = rtl8169_alloc_rx_skb(tp->pci_dev, tp->Rx_skbuff + i, tp->RxDescArray + i, tp->rx_buf_sz, tp->align); if (ret < 0) break; } return cur - start; } static inline void rtl8169_mark_as_last_descriptor(struct RxDesc *desc) { desc->opts1 |= cpu_to_le32(RingEnd); } static void rtl8169_init_ring_indexes(struct rtl8169_private *tp) { tp->dirty_tx = tp->dirty_rx = tp->cur_tx = tp->cur_rx = 0; } static int rtl8169_init_ring(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); rtl8169_init_ring_indexes(tp); memset(tp->tx_skb, 0x0, NUM_TX_DESC * sizeof(struct ring_info)); memset(tp->Rx_skbuff, 0x0, NUM_RX_DESC * sizeof(struct sk_buff *)); if (rtl8169_rx_fill(tp, dev, 0, NUM_RX_DESC) != NUM_RX_DESC) goto err_out; rtl8169_mark_as_last_descriptor(tp->RxDescArray + NUM_RX_DESC - 1); return 0; err_out: rtl8169_rx_clear(tp); return -ENOMEM; } static void rtl8169_unmap_tx_skb(struct pci_dev *pdev, struct ring_info *tx_skb, struct TxDesc *desc) { unsigned int len = tx_skb->len; pci_unmap_single(pdev, le64_to_cpu(desc->addr), len, PCI_DMA_TODEVICE); desc->opts1 = 0x00; desc->opts2 = 0x00; desc->addr = 0x00; tx_skb->len = 0; } static void rtl8169_tx_clear(struct rtl8169_private *tp) { unsigned int i; struct net_device *dev = tp->dev; for (i = tp->dirty_tx; i < tp->dirty_tx + NUM_TX_DESC; i++) { unsigned int entry = i % NUM_TX_DESC; struct ring_info *tx_skb = tp->tx_skb + entry; unsigned int len = tx_skb->len; if (len) { struct sk_buff *skb = tx_skb->skb; rtl8169_unmap_tx_skb(tp->pci_dev, tx_skb, tp->TxDescArray + entry); if (skb) { dev_kfree_skb(skb); tx_skb->skb = NULL; } RTLDEV->stats.tx_dropped++; } } tp->cur_tx = tp->dirty_tx = 0; } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) static void rtl8169_schedule_work(struct net_device *dev, void (*task)(void *)) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) struct rtl8169_private *tp = netdev_priv(dev); PREPARE_WORK(&tp->task, task, dev); schedule_delayed_work(&tp->task, 4); #endif //LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) } #else static void rtl8169_schedule_work(struct net_device *dev, work_func_t task) { struct rtl8169_private *tp = netdev_priv(dev); PREPARE_DELAYED_WORK(&tp->task, task); schedule_delayed_work(&tp->task, 4); } #endif static void rtl8169_wait_for_quiescence(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; synchronize_irq(dev->irq); /* Wait for any pending NAPI task to complete */ #ifdef CONFIG_R8169_NAPI RTL_NAPI_DISABLE(dev, &tp->napi); #endif rtl8169_irq_mask_and_ack(ioaddr); #ifdef CONFIG_R8169_NAPI RTL_NAPI_ENABLE(dev, &tp->napi); #endif } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) static void rtl8169_reinit_task(void *_data) #else static void rtl8169_reinit_task(struct work_struct *work) #endif { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) struct net_device *dev = _data; #else struct rtl8169_private *tp = container_of(work, struct rtl8169_private, task.work); struct net_device *dev = tp->dev; #endif int ret; if (netif_running(dev)) { rtl8169_wait_for_quiescence(dev); rtl8169_close(dev); } ret = rtl8169_open(dev); if (unlikely(ret < 0)) { if (net_ratelimit()) { struct rtl8169_private *tp = netdev_priv(dev); if (netif_msg_drv(tp)) { printk(PFX KERN_ERR "%s: reinit failure (status = %d)." " Rescheduling.\n", dev->name, ret); } } rtl8169_schedule_work(dev, rtl8169_reinit_task); } } #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) static void rtl8169_reset_task(void *_data) { struct net_device *dev = _data; struct rtl8169_private *tp = netdev_priv(dev); #else static void rtl8169_reset_task(struct work_struct *work) { struct rtl8169_private *tp = container_of(work, struct rtl8169_private, task.work); struct net_device *dev = tp->dev; #endif if (!netif_running(dev)) return; rtl8169_wait_for_quiescence(dev); rtl8169_rx_interrupt(dev, tp, tp->mmio_addr, ~(u32)0); rtl8169_tx_clear(tp); if (tp->dirty_rx == tp->cur_rx) { rtl8169_init_ring_indexes(tp); rtl8169_hw_start(dev); netif_wake_queue(dev); } else { if (net_ratelimit()) { struct rtl8169_private *tp = netdev_priv(dev); if (netif_msg_intr(tp)) { printk(PFX KERN_EMERG "%s: Rx buffers shortage\n", dev->name); } } rtl8169_schedule_work(dev, rtl8169_reset_task); } } static void rtl8169_tx_timeout(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); rtl8169_hw_reset(tp->mmio_addr); /* Let's wait a bit while any (async) irq lands on */ rtl8169_schedule_work(dev, rtl8169_reset_task); } static int rtl8169_xmit_frags(struct rtl8169_private *tp, struct sk_buff *skb, u32 opts1) { struct skb_shared_info *info = skb_shinfo(skb); unsigned int cur_frag, entry; struct TxDesc *txd = NULL; entry = tp->cur_tx; for (cur_frag = 0; cur_frag < info->nr_frags; cur_frag++) { skb_frag_t *frag = info->frags + cur_frag; dma_addr_t mapping; u32 status, len; void *addr; entry = (entry + 1) % NUM_TX_DESC; txd = tp->TxDescArray + entry; len = frag->size; addr = ((void *) page_address(frag->page)) + frag->page_offset; mapping = pci_map_single(tp->pci_dev, addr, len, PCI_DMA_TODEVICE); /* anti gcc 2.95.3 bugware (sic) */ status = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC)); txd->opts1 = cpu_to_le32(status); txd->addr = cpu_to_le64(mapping); tp->tx_skb[entry].len = len; } if (cur_frag) { tp->tx_skb[entry].skb = skb; txd->opts1 |= cpu_to_le32(LastFrag); } return cur_frag; } static inline u32 rtl8169_tso(struct sk_buff *skb, struct net_device *dev) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) if (dev->features & NETIF_F_TSO) { u32 mss = skb_shinfo(skb)->gso_size; if (mss) return LargeSend | ((mss & MSSMask) << MSSShift); } #endif //LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) return 0; } static inline u32 rtl8169_tx_csum(struct sk_buff *skb, struct net_device *dev) { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,22) const struct iphdr *ip = skb->nh.iph; #else const struct iphdr *ip = ip_hdr(skb); #endif if (skb->ip_summed == CHECKSUM_PARTIAL) { if (ip->protocol == IPPROTO_TCP) return IPCS | TCPCS; else if (ip->protocol == IPPROTO_UDP) return IPCS | UDPCS; #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) WARN_ON(1); /* we need a WARN() */ #endif } return 0; } static int rtl8169_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); unsigned int frags, entry = tp->cur_tx % NUM_TX_DESC; struct TxDesc *txd = tp->TxDescArray + entry; void __iomem *ioaddr = tp->mmio_addr; dma_addr_t mapping; u32 status, len; u32 opts1; int ret = NETDEV_TX_OK; if (unlikely(TX_BUFFS_AVAIL(tp) < skb_shinfo(skb)->nr_frags)) { if (netif_msg_drv(tp)) { printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n", dev->name); } goto err_stop; } if (unlikely(le32_to_cpu(txd->opts1) & DescOwn)) goto err_stop; opts1 = DescOwn | rtl8169_tso(skb, dev); opts1 |= rtl8169_tx_csum(skb, dev); frags = rtl8169_xmit_frags(tp, skb, opts1); if (frags) { len = skb_headlen(skb); opts1 |= FirstFrag; } else { len = skb->len; opts1 |= FirstFrag | LastFrag; tp->tx_skb[entry].skb = skb; } mapping = pci_map_single(tp->pci_dev, skb->data, len, PCI_DMA_TODEVICE); tp->tx_skb[entry].len = len; txd->addr = cpu_to_le64(mapping); txd->opts2 = cpu_to_le32(rtl8169_tx_vlan_tag(tp, skb)); wmb(); /* anti gcc 2.95.3 bugware (sic) */ status = opts1 | len | (RingEnd * !((entry + 1) % NUM_TX_DESC)); txd->opts1 = cpu_to_le32(status); dev->trans_start = jiffies; tp->cur_tx += frags + 1; rtl_wmb(); RTL_W8(TxPoll, NPQ); /* set polling bit */ if (TX_BUFFS_AVAIL(tp) < MAX_SKB_FRAGS) { netif_stop_queue(dev); rtl_rmb(); if (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS) netif_wake_queue(dev); } out: return ret; err_stop: netif_stop_queue(dev); ret = NETDEV_TX_BUSY; RTLDEV->stats.tx_dropped++; goto out; } static void rtl8169_pcierr_interrupt(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; void __iomem *ioaddr = tp->mmio_addr; u16 pci_status, pci_cmd; pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); pci_read_config_word(pdev, PCI_STATUS, &pci_status); if (netif_msg_intr(tp)) { printk(KERN_ERR "%s: PCI error (cmd = 0x%04x, status = 0x%04x).\n", dev->name, pci_cmd, pci_status); } /* * The recovery sequence below admits a very elaborated explanation: * - it seems to work; * - I did not see what else could be done; * - it makes iop3xx happy. * * Feel free to adjust to your needs. */ pci_write_config_word(pdev, PCI_COMMAND, pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY); pci_write_config_word(pdev, PCI_STATUS, pci_status & (PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_SIG_TARGET_ABORT)); /* The infamous DAC f*ckup only happens at boot time */ if ((tp->cp_cmd & PCIDAC) && !tp->dirty_rx && !tp->cur_rx) { if (netif_msg_intr(tp)) printk(KERN_INFO "%s: disabling PCI DAC.\n", dev->name); tp->cp_cmd &= ~PCIDAC; RTL_W16(CPlusCmd, tp->cp_cmd); dev->features &= ~NETIF_F_HIGHDMA; } rtl8169_hw_reset(ioaddr); rtl8169_schedule_work(dev, rtl8169_reinit_task); } static void rtl8169_tx_interrupt(struct net_device *dev, struct rtl8169_private *tp, void __iomem *ioaddr) { unsigned int dirty_tx, tx_left; assert(dev != NULL); assert(tp != NULL); assert(ioaddr != NULL); dirty_tx = tp->dirty_tx; rtl_rmb(); tx_left = tp->cur_tx - dirty_tx; while (tx_left > 0) { unsigned int entry = dirty_tx % NUM_TX_DESC; struct ring_info *tx_skb = tp->tx_skb + entry; u32 len = tx_skb->len; u32 status; rmb(); status = le32_to_cpu(tp->TxDescArray[entry].opts1); if (status & DescOwn) break; RTLDEV->stats.tx_bytes += len; RTLDEV->stats.tx_packets++; rtl8169_unmap_tx_skb(tp->pci_dev, tx_skb, tp->TxDescArray + entry); if (status & LastFrag) { dev_kfree_skb_irq(tx_skb->skb); tx_skb->skb = NULL; } dirty_tx++; tx_left--; } if (tp->dirty_tx != dirty_tx) { tp->dirty_tx = dirty_tx; rtl_wmb(); if (netif_queue_stopped(dev) && (TX_BUFFS_AVAIL(tp) >= MAX_SKB_FRAGS)) { netif_wake_queue(dev); } } } static inline int rtl8169_fragmented_frame(u32 status) { return (status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag); } static inline void rtl8169_rx_csum(struct sk_buff *skb, struct RxDesc *desc) { u32 opts1 = le32_to_cpu(desc->opts1); u32 status = opts1 & RxProtoMask; if (((status == RxProtoTCP) && !(opts1 & TCPFail)) || ((status == RxProtoUDP) && !(opts1 & UDPFail)) || ((status == RxProtoIP) && !(opts1 & IPFail))) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; } static inline int rtl8169_try_rx_copy(struct sk_buff **sk_buff, int pkt_size, struct RxDesc *desc, int rx_buf_sz, unsigned int align) { int ret = -1; if (pkt_size < rx_copybreak) { struct sk_buff *skb; skb = dev_alloc_skb(pkt_size + align); if (skb) { skb_reserve(skb, (align - 1) & (uintptr_t)skb->data); eth_copy_and_sum(skb, sk_buff[0]->data, pkt_size, 0); *sk_buff = skb; ret = 0; } } return ret; } static int rtl8169_rx_interrupt(struct net_device *dev, struct rtl8169_private *tp, void __iomem *ioaddr, u32 budget) { unsigned int cur_rx, rx_left; unsigned int delta, count = 0; u32 rx_quota = RTL_RX_QUOTA(dev, budget); assert(dev != NULL); assert(tp != NULL); assert(ioaddr != NULL); cur_rx = tp->cur_rx; rx_left = NUM_RX_DESC + tp->dirty_rx - cur_rx; rx_left = rtl8169_rx_quota(rx_left, (u32) rx_quota); if ((tp->RxDescArray == NULL) || (tp->Rx_skbuff == NULL)) { goto rx_out; } for (; rx_left > 0; rx_left--, cur_rx++) { unsigned int entry = cur_rx % NUM_RX_DESC; struct RxDesc *desc = tp->RxDescArray + entry; u32 status; rmb(); status = le32_to_cpu(desc->opts1); if (status & DescOwn) break; if (unlikely(status & RxRES)) { if (netif_msg_rx_err(tp)) { printk(KERN_INFO "%s: Rx ERROR. status = %08x\n", dev->name, status); } RTLDEV->stats.rx_errors++; if (status & (RxRWT | RxRUNT)) RTLDEV->stats.rx_length_errors++; if (status & RxCRC) RTLDEV->stats.rx_crc_errors++; rtl8169_mark_to_asic(desc, tp->rx_buf_sz); } else { struct sk_buff *skb = tp->Rx_skbuff[entry]; int pkt_size = (status & 0x00003FFF) - 4; /* * The driver does not support incoming fragmented * frames. They are seen as a symptom of over-mtu * sized frames. */ if (unlikely(rtl8169_fragmented_frame(status))) { RTLDEV->stats.rx_dropped++; RTLDEV->stats.rx_length_errors++; rtl8169_mark_to_asic(desc, tp->rx_buf_sz); continue; } rtl8169_rx_csum(skb, desc); pci_unmap_single(tp->pci_dev, le64_to_cpu(desc->addr), tp->rx_buf_sz, PCI_DMA_FROMDEVICE); if (rtl8169_try_rx_copy(&skb, pkt_size, desc, tp->rx_buf_sz, tp->align)) { tp->Rx_skbuff[entry] = NULL; } else { dma_addr_t mapping; mapping = pci_map_single(tp->pci_dev, tp->Rx_skbuff[entry]->data, tp->rx_buf_sz, PCI_DMA_FROMDEVICE); rtl8169_map_to_asic(desc, mapping, tp->rx_buf_sz); } skb->dev = dev; skb_put(skb, pkt_size); skb->protocol = eth_type_trans(skb, dev); if (rtl8169_rx_vlan_skb(tp, desc, skb) < 0) rtl8169_rx_skb(skb); dev->last_rx = jiffies; RTLDEV->stats.rx_bytes += pkt_size; RTLDEV->stats.rx_packets++; } } count = cur_rx - tp->cur_rx; tp->cur_rx = cur_rx; delta = rtl8169_rx_fill(tp, dev, tp->dirty_rx, tp->cur_rx); if (!delta && count && netif_msg_intr(tp)) printk(KERN_INFO "%s: no Rx buffer allocated\n", dev->name); tp->dirty_rx += delta; /* * FIXME: until there is periodic timer to try and refill the ring, * a temporary shortage may definitely kill the Rx process. * - disable the asic to try and avoid an overflow and kick it again * after refill ? * - how do others driver handle this condition (Uh oh...). */ if ((tp->dirty_rx + NUM_RX_DESC == tp->cur_rx) && netif_msg_intr(tp)) printk(KERN_EMERG "%s: Rx buffers exhausted\n", dev->name); rx_out: return count; } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19) static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance, struct pt_regs *regs) #else static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance) #endif { struct net_device *dev = (struct net_device *) dev_instance; struct rtl8169_private *tp = netdev_priv(dev); int boguscnt = max_interrupt_work; void __iomem *ioaddr = tp->mmio_addr; int status; int handled = IRQ_NONE; do { status = RTL_R16(IntrStatus); /* hotplug/major error/no more work/shared irq */ if ((status == 0xFFFF) || !status) break; handled = IRQ_HANDLED; if (unlikely(!netif_running(dev))) { rtl8169_asic_down(ioaddr); goto out; } status &= tp->intr_mask; RTL_W16(IntrStatus, (status & RxFIFOOver) ? (status | RxOverflow) : status); if (!(status & rtl8169_intr_mask)) break; if (unlikely(status & SYSErr)) { rtl8169_pcierr_interrupt(dev); break; } if (status & LinkChg) rtl8169_check_link_status(dev, tp, ioaddr); #ifdef CONFIG_R8169_NAPI if (status & rtl8169_napi_event) { RTL_W16(IntrMask, rtl8169_intr_mask & ~rtl8169_napi_event); tp->intr_mask = ~rtl8169_napi_event; if (likely(RTL_NETIF_RX_SCHEDULE_PREP(dev, &tp->napi))) { __RTL_NETIF_RX_SCHEDULE(dev, &tp->napi); } else if (netif_msg_intr(tp)) { printk(KERN_INFO "%s: interrupt %04x in poll\n", dev->name, status); } } break; #else /* Rx interrupt */ if (status & (RxOK | RxOverflow | RxFIFOOver)) { rtl8169_rx_interrupt(dev, tp, tp->mmio_addr, ~(u32)0); } /* Tx interrupt */ if (status & (TxOK | TxErr)) { rtl8169_tx_interrupt(dev, tp, ioaddr); } #endif boguscnt--; } while (boguscnt > 0); if (boguscnt <= 0) { if (netif_msg_intr(tp) && net_ratelimit()) { printk(KERN_WARNING "%s: Too much work at interrupt!\n", dev->name); } /* Clear all interrupt sources. */ RTL_W16(IntrStatus, 0xffff); } out: return IRQ_RETVAL(handled);; } #ifdef CONFIG_R8169_NAPI static int rtl8169_poll(napi_ptr napi, napi_budget budget) { struct rtl8169_private *tp = RTL_GET_PRIV(napi, struct rtl8169_private); void __iomem *ioaddr = tp->mmio_addr; RTL_GET_NETDEV(tp) unsigned int work_to_do = RTL_NAPI_QUOTA(budget, dev); unsigned int work_done; work_done = rtl8169_rx_interrupt(dev, tp, ioaddr, (u32) budget); rtl8169_tx_interrupt(dev, tp, ioaddr); RTL_NAPI_QUOTA_UPDATE(dev, work_done, budget); if (work_done < work_to_do) { RTL_NETIF_RX_COMPLETE(dev, napi); tp->intr_mask = rtl8169_intr_mask; /* * 20040426: the barrier is not strictly required but the * behavior of the irq handler could be less predictable * without it. Btw, the lack of flush for the posted pci * write is safe - FR */ smp_wmb(); RTL_W16(IntrMask, rtl8169_intr_mask); } return RTL_NAPI_RETURN_VALUE; } #endif//CONFIG_R8169_NAPI static void rtl8169_down(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; #if (LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)) && (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0)) unsigned int poll_locked = 0; #endif rtl8169_delete_timer(dev); rtl8169_delete_esd_timer(dev, &tp->esd_timer); netif_stop_queue(dev); #ifdef CONFIG_R8169_NAPI #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) napi_disable(&tp->napi); #endif #endif RTL_W32(RxConfig, RTL_R32(RxConfig) & ~(AcceptBroadcast | AcceptMulticast | AcceptMyPhys | AcceptAllPhys)); mdelay(1); rtl8169_irq_mask_and_ack(ioaddr); rtl8169_trx_reset(ioaddr); /* Update the error counts. */ tp->stats.rx_missed_errors += RTL_R32(RxMissed); RTL_W32(RxMissed, 0); synchronize_irq(dev->irq); #if (LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)) && (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0)) if (!poll_locked) { #ifdef CONFIG_R8169_NAPI netif_poll_disable(dev); #endif poll_locked++; } #endif #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,11) /* Give a racing hard_start_xmit a few cycles to complete. */ synchronize_sched(); /* FIXME: should this be synchronize_irq()? */ #endif spin_lock_irqsave(&tp->phy_lock, flags); mdio_write(ioaddr, 0x1f, 0x0000); mdio_write(ioaddr, MII_BMCR, 0); spin_unlock_irqrestore(&tp->phy_lock, flags); /* * And now for the 50k$ question: are IRQ disabled or not ? * * Two paths lead here: * 1) dev->close * -> netif_running() is available to sync the current code and the * IRQ handler. See rtl8169_interrupt for details. * 2) dev->change_mtu * -> rtl8169_poll can not be issued again and re-enable the * interruptions. Let's simply issue the IRQ down sequence again. * * No loop if hotpluged or major error (0xffff). */ rtl8169_tx_clear(tp); rtl8169_rx_clear(tp); } static int rtl8169_close(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); struct pci_dev *pdev = tp->pci_dev; if(tp->TxDescArray!=NULL && tp->RxDescArray!=NULL) { rtl8169_down(dev); free_irq(dev->irq, dev); pci_free_consistent(pdev, R8169_RX_RING_BYTES, tp->RxDescArray, tp->RxPhyAddr); pci_free_consistent(pdev, R8169_TX_RING_BYTES, tp->TxDescArray, tp->TxPhyAddr); tp->TxDescArray = NULL; tp->RxDescArray = NULL; } return 0; } #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,11) static void rtl8169_shutdown(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); rtl8169_close(dev); } #endif static void rtl8169_set_rx_mode(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; u32 mc_filter[2]; /* Multicast hash filter */ int i, rx_mode; u32 tmp = 0; if (dev->flags & IFF_PROMISC) { /* Unconditionally log net taps. */ if (netif_msg_link(tp)) { printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); } rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys | AcceptAllPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; } else if ((dev->mc_count > multicast_filter_limit) || (dev->flags & IFF_ALLMULTI)) { /* Too many to filter perfectly -- accept all multicasts. */ rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; } else { struct dev_mc_list *mclist; rx_mode = AcceptBroadcast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0; for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26; mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); rx_mode |= AcceptMulticast; } } spin_lock_irqsave(&tp->lock, flags); tmp = rtl8169_rx_config | rx_mode | (RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask); RTL_W32(RxConfig, tmp); RTL_W32(MAR0 + 4, mc_filter[1]); RTL_W32(MAR0 + 0, mc_filter[0]); spin_unlock_irqrestore(&tp->lock, flags); } /** * rtl8169_get_stats - Get rtl8169 read/write statistics * @dev: The Ethernet Device to get statistics for * * Get TX/RX statistics for rtl8169 */ static struct net_device_stats *rtl8169_get_stats(struct net_device *dev) { struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; unsigned long flags; if (netif_running(dev)) { spin_lock_irqsave(&tp->lock, flags); tp->stats.rx_missed_errors += RTL_R32(RxMissed); RTL_W32(RxMissed, 0); spin_unlock_irqrestore(&tp->lock, flags); } return &RTLDEV->stats; } #ifdef CONFIG_PM #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,11) static int rtl8169_suspend(struct pci_dev *pdev, u32 state) #else static int rtl8169_suspend(struct pci_dev *pdev, pm_message_t state) #endif { struct net_device *dev = pci_get_drvdata(pdev); struct rtl8169_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->mmio_addr; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10) u32 pci_pm_state = pci_choose_state(pdev, state); #endif if (!netif_running(dev)) goto out; netif_device_detach(dev); netif_stop_queue(dev); rtl8169_delete_timer(dev); rtl8169_delete_esd_timer(dev, &tp->esd_timer); spin_lock_irq(&tp->lock); rtl8169_asic_down(ioaddr); tp->stats.rx_missed_errors += RTL_R32(RxMissed); RTL_W32(RxMissed, 0); spin_unlock_irq(&tp->lock); out: #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10) pci_save_state(pdev, &pci_pm_state); #else pci_save_state(pdev); #endif pci_enable_wake(pdev, pci_choose_state(pdev, state), tp->wol_enabled); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int rtl8169_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10) u32 pci_pm_state = PCI_D0; #endif pci_set_power_state(pdev, PCI_D0); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10) pci_restore_state(pdev, &pci_pm_state); #else pci_restore_state(pdev); #endif pci_enable_wake(pdev, PCI_D0, 0); if (!netif_running(dev)) goto out; netif_device_attach(dev); rtl8169_schedule_work(dev, rtl8169_reset_task); out: return 0; } #endif /* CONFIG_PM */ static struct pci_driver rtl8169_pci_driver = { .name = MODULENAME, .id_table = rtl8169_pci_tbl, .probe = rtl8169_init_one, .remove = __devexit_p(rtl8169_remove_one), #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,11) .shutdown = rtl8169_shutdown, #endif #ifdef CONFIG_PM .suspend = rtl8169_suspend, .resume = rtl8169_resume, #endif }; static int __init rtl8169_init_module(void) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,0) return pci_register_driver(&rtl8169_pci_driver); #else return pci_module_init(&rtl8169_pci_driver); #endif } static void __exit rtl8169_cleanup_module(void) { pci_unregister_driver(&rtl8169_pci_driver); } module_init(rtl8169_init_module); module_exit(rtl8169_cleanup_module);